期刊文献+

一种获得各向异性平面梁在任意荷载作用下弹性解的新方法 被引量:3

A Novel Method to Obtain the Elasticity Solutions of Anisotropic Plane Beam Subjected to Arbitrary Loads
下载PDF
导出
摘要 通过求解函数方程,给出了一种获得各向异性线性平面梁弹性解的新方法,该方法可以考虑任意形式的荷载以及各种端部支撑条件。将该方法与传统的逆解法或者半逆解法比较,其最大的好处在于不需要猜测应力函数的形式而直接获得问题的精确解。算例验证了该方法的正确性,同时也提供了一种求解平面梁承受任意荷载的新思路。 A novel method was given to obtain the elasticity solutions for linear anisotropic plane beam subjected to arbitrary loads with various ends conditions by solving functional equa- tions. Comparing this general method with traditional trial-and-error method, the most advan- tage was that there was no need to guess the form of stress function and obtain the solutions di- rectly. The united equations for solving boundary value problem of anisotropic plane beam were found and several examples showed the correctness of this general method. A new way was al- so provided to derive the elasticity solutions of plane beam subjected to arbitrary loads with va- rious ends conditions.
出处 《应用数学和力学》 CSCD 北大核心 2013年第6期630-642,共13页 Applied Mathematics and Mechanics
关键词 函数方程 各向异性平面梁 弹性解 任意荷载 边界条件 弹性理论 functional equation anisotropic plane beam elasticity solution arbitrary load boundary condition elasticity theory
  • 相关文献

参考文献11

  • 1Timoshenko S P, Goodier J N. Theory of Elasticity[ M]. 3rd ed. New York: McGraw-Hill, 1970.
  • 2Lekhnitsldi S G. Anisotropic Plate[M]. New York: Gordon and Breach, 1968.
  • 3丁皓江,黄德进,王惠明.均布载荷作用下各向异性固支梁的解析解[J].应用数学和力学,2006,27(10):1144-1149. 被引量:6
  • 4Sankar B V. An elasticity solution for functionally graded beam [ J ]. Composite Science and Technology, 2001, 61(1): 589-595.
  • 5Ding H J, Jiang A M. A boundary integral formulation and solution for 2D problems in magne- to-electro-elastic media[ J]. Composite and Structures, 2004, 82 (2) : 1599-1607.
  • 6Huang D J, Ding H J, Chen W Q. Analytical solution for functionally graded magneto-electro- elastic plane beams [ J ]. International Journal of Engineering Science, 2007, 45 ( 7 ) : 457- 485.
  • 7Huang D J, Ding H J, Chen W Q. Static analysis of anisotropic functionally graded magneto- electro-elastic beams subjected to arbitrary loading [ J]. European Journal of Mechanics A/ Solids, 2010, 29( 12): 355-359.
  • 8Ding H J, Huang D J, Chen W Q. Elasticity solutions for plane anisotropic functionally graded beams[J]. International Journal of Solids and Structures, 2007, 44(3) : 176-196.
  • 9Alibeigloo A. Thermoelasticity analysis of functionally graded beam with integrated surface pi- ezoelectric layers[J]. Composite Structures, 2010, 92(4) : 1535-1543.
  • 10Senthil S V, Batra R C. The generalized plane strain deformations of thick anisotropic com- posite laminated plates [ J ]. International Journal of Solids and Structures, 2000, 37 ( 4 ) : 715-733.

二级参考文献6

  • 1Timoshenko S P, Goodier J N. Theory of Elasticity [M].3rd Ed. New York: McGraw-Hill, 1970.
  • 2Lekhnitskii S G. Anisotropic Plate[M] .New York: Gordon and Breach, 1%8.
  • 3Jiang A M, Ding H J. The analytical solutions for orthotropic cantilever beams(Ⅰ): Subjected tosurface forces[J] . Journal of Zhejiang University ,Science A ,2005,6(2) : 125-131.
  • 4Gere J M, Timoshenko S P. Mechanics of Materials [M]. 2nd Ed. Boston: PWS-KENT Publishing Company, 1984.
  • 5Ahmed S R, Idris B M, Uddin M W. Numerical solution of both ends fixed deep beams[J]. Computer&Structures, 1996,61(1) :21-29.
  • 6Ding H J,Huang D J, Wang H M. Analytical solution for fixed-end beam subjected to uniform load[J]. Journal of Zhejiang University, Science A ,2005,6(8) :779-783.

共引文献5

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部