期刊文献+

去除乘性噪声的积分微分方程模型 被引量:3

Model based on the integro-differential equation for multiplicative noise removal
下载PDF
导出
摘要 恢复含乘性噪声的图像是当前图像处理的重要研究课题.提出基于积分微分方程的乘性噪声去除模型.新模型中假定乘性噪声服从伽马分布.讨论了经典的去除乘性噪声的AA模型,在此基础上通过在逆尺度空间积分"尺度"图像,从而得到了新的积分微分方程.这种新的积分微分方程含有一个单调增加的尺度函数.通过选取适当的尺度函数,该方程可以有效地去除乘性噪声. Multiplicative noise removal is an important research topic on image processing. This paper presents a novel integro-differential equation approach for removing multiplicative noise. Under the assumption that multiplicative noise follows a Gamma distribution, we firstly discuss the classical AA model, and then in order to arrive at the novel integro-differential equation, integrate in inverse scale space a succession of refined 'slices' of the image. The novel integro-differential equation includes a monotone increasing scaling function. By choosing an adaptive scaling function, this equation can remove multiplicative noise efficiently. Finally, the experimental results demonstrate the better performance of the proposed model.
作者 白键 冯象初
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第3期132-138,共7页 Journal of Xidian University
基金 博士点新教师基金资助项目(20100203120010) 国家自然科学基金资助项目(61105011)
关键词 图像去噪 总变差最小 乘性噪声 积分微分方程 image denoising total variation minimization multiplicative noise integro-differential equation
  • 相关文献

参考文献11

  • 1Rudin I., Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physica D, 1992, 60(1- 4) : 259-268.
  • 2Aubert G, Aujol J. A Variational Approach to Remove Multiplieative Noise [J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946.
  • 3Shi B, Huang L. A Model Based on the Fourth-Order PDE for Multiplieative Noise Removal [J]. Journal of Hunan University (Natural Science), 2011, 38(7): 83-86.
  • 4王旭东,冯象初,霍雷刚.去除乘性噪声的重加权各向异性全变差模型[J].自动化学报,2012,38(3):444-451. 被引量:14
  • 5姚莉丽,冯象初,李亚峰.去除乘性噪音的主成分分析算法[J].光子学报,2011,40(7):1031-1035. 被引量:9
  • 6BAI Jian FENG Xiangchu.Image Denoising and Decomposition Using Non-convex Functional[J].Chinese Journal of Electronics,2012,21(1):102-106. 被引量:9
  • 7Janev M, Pilipovic S, Atanackovic T, et al. Fully Fractional Anisotropic Diffusion for Image Denoising [J].Mathematical and Computer Modeling, 2011, 54(1) : 729-741.
  • 8Tadmar E, Athavale P. Multiscale Image Representation Using Integral-Differential Equations [J]. Inverse Problems and Imaging, 2009, 3(4): 693-710.
  • 9Athavale P, Tadmar E. Integro-differential Equation Based on (BV, L1) Image Decomposition [J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 300-312.
  • 10Joesph A, Marcucilli. A Review of Some Inverse Scale Space Methods for Image Restoration [D]. San Diego: A Thesis Presented to the Faculty of San Diego State University, 2012.

二级参考文献38

  • 1BUADES A,COLL B,MOREL J M.A nonLocal algorithm for image denoising[C].Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65.
  • 2DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
  • 3AHARON M,ELAD M,BRUCKSTEIN A M.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 4LEE J S.Speckle suppression and analysis for synthetic aperture radar image[J].Optical Engineering,1986,25(5):636-643.
  • 5KUAN D,SAWCHUK A,STRAND T.Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(3):373-383.
  • 6FROST V S,STILES J A,SHANMUGAN K S.A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(2):157-165.
  • 7DONOHO D L,JOHNSTONE I M.Ideal spadal adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.
  • 8DONOHO D L.Denoising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627.
  • 9SHI J,OSHER S.A nonlinear inverse scale space method for a convex multiplicative noise model[J].SIAM Journal on Imaging Sciences,2008,1(3):294–321.
  • 10AUBERT G,AUJOL J F.A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925–946.

共引文献26

同被引文献36

  • 1胡国飞,傅健,彭群生.自适应颜色迁移[J].计算机学报,2004,27(9):1245-1249. 被引量:51
  • 2李宏,向遥,张卫,胡可成.基于直方图映射和分层的图像迁移算法研究[J].小型微型计算机系统,2007,28(6):1110-1114. 被引量:6
  • 3AUBERT G, AUJOL J. A Variational Approach to Removing Multiplicative Noise[J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946.
  • 4JIN Z M, YANG X P. Analysis of a New Variation Model for Multiplicative Noise Removal[J]. Journal of Mathematical Analysis and Applications, 2010, 36(2): 415-426.
  • 5HUANG Y M, NG M K, WEN Y W. A New Total Variation Method for Multiplicative Noise Removal[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 20-40.
  • 6TEUBER T, LANG A. Nonlocal Filters for Removing Multiplicative Noise [C]//Scale Space and Variational Methods 6667. New York: Springer-Verlag, 2012: 56-61.
  • 7DURAND S, FADILI J, NIKOLOVA M. Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients[J]. Journal of Mathematical Imaging and Vision, 2010, 36(3) : 201-226.
  • 8HUANG Y M, MOISAN L, NG M K, et al. Multiplicative Noise Removal via a Learned Dictionary [J]. IEEE Transactions on Image Processing, 2012, 21(11): 4534-4543.
  • 9XIE H, PIERCE L E, ULABY F T. Statistical Properties of Logarithmically Transformed Speckle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3) : 721-727.
  • 10LIU C, ZHU S. A Convex Relaxation Method for Computing Exact Global Solutions for Multiplieative Noise Removal [J]. Journal of Computational and Applied Mathematics, 2013, 238: 144-155.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部