期刊文献+

一种舰船非线性隔振装置的仿真及谱特性研究 被引量:1

Spectra Characteristic and Simulation of Nonlinear Vibration Isolator of Naval Vessel
下载PDF
导出
摘要 详细论述一种舰船非线性隔振装置物理和数学模型的建立过程,选用数值方法中的四阶变步长龙格库塔法对数学模型进行仿真计算,利用Mathematica软件实现算法;对解的谱特性做了仿真研究,并分析了谱特性。大量的谱分析表明,随着非线性作用的增强,依次出现奇数阶超谐波分岔,对称破缺分岔,次谐波分岔,次谐波分量也会发生超谐波分岔和次谐波分岔。 Procedure of mathematical and physical modeling was discussed in detail. The numerical results were obtained by Fourth order variable step Runge-Kutta algorithm. The algorithm was implemented with Mathematica. Vast analysis show odd order superharmonic bi- furcation, the symmetry breaking bifurcation and subharmonic bifurcation emerged in sequence with increased nonlinear effect. Subharmonic component also generated superharmonic bifurcation and subharmonie bifurcation.
出处 《舰船电子工程》 2013年第5期102-104,共3页 Ship Electronic Engineering
关键词 非线性隔振装置 MATHEMATICA 龙格库塔法 谱特性 nonlinear vibration isolator, Mathematica, Runge-Kutta algorithm, spectra characteristic
  • 相关文献

参考文献7

  • 1朱石坚,何琳.舰船水声隐身技术(一)[J].噪声与振动控制,2002,22(3):17-19. 被引量:20
  • 2Crede C E. Vibration and Shock Isolation [M]. New York= John Wiley Sons, 1951 :20-33.
  • 3楼京俊.基于混沌理论的线谱控制技术研究[D].武汉:海军工程大学,2006:21-30.
  • 4Feigenbaum M J. The Transition to Aperiodic Behavior in Tur- bulent Systems[J]. Communications in Mathematical Physics, 1980,77 : 65-86.
  • 5Feigenbaum M J. The Onset Spectrum of Turbulence FJ]. Physics Letters A, 1979,74 (6) : 375-378.
  • 6Nauenberg M, Rudnick J. Universality and the Power Spectrum at the Onset of Chaos[J]. Physical Review B, 1981,24(1) :493- 495.
  • 7杨夷梅,杨玉军.一种基于LDC混沌理论与RSA的图像传输算法[J].计算机与数字工程,2009,37(2):102-104. 被引量:4

二级参考文献6

  • 1陈婷,蒋国平,权安静.数字图像加密技术的探讨[J].信息安全与通信保密,2005,27(1):57-59. 被引量:9
  • 2Habutsu T, Nishio Y, Sasase I, Mori S. A Secret Key Cryptsystem by Iterating a Chaotic Map [J]. LNCS 547, Berlin: Springer-Verlag, 1991 : 127-136
  • 3Stojanovski T, Pihl J, Kocarev L. Chaos-Based Random Number Generators [J]. Part Ⅱ: Practical realization, IEEE Transaction on Circuits System-2: Fundamental Theory and Application, 2001,48(3) : 281-288
  • 4Jakimoski G, Kocarev L. Chaos and Cryptography: Block Encryption Ciphers Based on Chaotic Maps [J]. IEEE Transaction on Circuits System- 1 : Fundamental Theory and Application, 2001,48 (2) : 163-169
  • 5杨夷梅,杨玉军.一种基于混沌理论的图像加密算法[J].计算机安全,2009(2):25-28. 被引量:3
  • 6李昌刚,韩正之,张浩然.图像加密技术综述[J].计算机研究与发展,2002,39(10):1317-1324. 被引量:101

共引文献27

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部