期刊文献+

基于SVM的空调系统智能故障诊断研究 被引量:3

Intelligent Fault Diagnosis for Air-condition System Based on Support Vector Machine
下载PDF
导出
摘要 空调系统作为武器装备管理系统的一部分,在国防工程中的作用至关重要,致使其结构和功能日益复杂,因此对自动检测提出了更高的要求。为了有效地提高空调系统故障诊断的效率和精度,本文提出了一种基于主成分分析(PCA)特征提取的支持向量机(SVM)混合诊断模型。该模型首先进行归一化预处理,消除奇异数据;然后利用主成分分析对数据属性进行简约,消除冗余信息并进行特征提取,支持向量机进行故障诊断;最后采用网格搜索法和交叉验证法对SVM的惩罚函数和核函数参数进行寻优。通过实例验证表明,整个处理过程将诊断识别率从58.018 1%提高到了99.953 6%,能有效地进行空调系统的故障诊断和定位,并可实现故障的准确区分。 As a part of weapon material management system,air-condition system is becoming more and more important to national defense engineering, resulting in the increasingly complex structure and function and putting forward higher requirements for automatic detection. For the purpose of effectively improving the efficiency and accuracy of fault diagnosis for air-condition system, this paper proposes a fault diagnosis model based on the support vector machine (SVM) of principal component analysis (PCA). Firstly,the model normalizes data to eliminate abnormal data and applies principal component analysis to simple data attributes; then it eliminates redundant information for feature extraction and makes fault diagnosis by support vector machine; and at the end, it uses gridsearch method and cross validation method to optimize the parameters of the penalty function and kernel function of SVM. The results show that the diagnosis accuracy is greatly improved from 58. 0181% to 99. 9536%, and the faults can be effectively located and distinguished.
出处 《安全与环境工程》 CAS 北大核心 2013年第3期139-142,148,共5页 Safety and Environmental Engineering
关键词 支持向量机(SVM) 空调系统 故障诊断 主成分分析(PCA) 参数寻优 support vector machine air-condition system fault diagnosis principal component analysis parameter optimization
  • 相关文献

参考文献9

  • 1Katipamula, S. ,M. R. Brambley. Methods for fault detection, di agnostics and prognostics for building systems--A review(I)[J]. Hvac & R Research ,2005,11 (1):3--25.
  • 2Gordon,J. M. , K. C. Ng. Predictive and diagnostic aspects of a universal thermodynamic model for chillers [J ]. International Journal of Heat and Mass Transfer,1995,38(5) :807--818.
  • 3Cristianini N.支持向量机导论[M].李国正,王猛译.北京:电子工业出版社,2004:15-60.
  • 4边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 5Fan,R. E. ,P. H. Chen,C. J. Lin. Working set selection using second order information for training support vector machine[J]. Journal of Machine Learning Research, 2005, (6) : 1 889-- 1 918.
  • 6Keerthi, S. S. , S. K. Shevade, C. Bhattcharyya, et al. Improve- ments to Platt's SMO algorithm for SVM classifier design[J].Neural Computation,2001,13 (3) ;637--649.
  • 7Weston, J. , C. Watkins. Multi-class Support Vector Machines [R]. London : University of London, 1998.
  • 8Kim,M. S. ,I. L. H. Yang, H. J. Yu. Robust speaker identifica tion using Greedy Kernel PCA[A]. In 20th IEEE International Conference on Tools with Artificial Intelligence [C]. USA, WashingtonD. C:IEEEComputer Society,2008:143 146.
  • 9SimonHaykin著 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..

共引文献92

同被引文献41

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部