期刊文献+

基于自适应距离半监督LE的图像检索

下载PDF
导出
摘要 Laplacian特征映射是基于欧氏距离的近邻数据点的保持,高维数据点的近邻选取最终将影响全局低维坐标.本文将鉴别信息引入到近邻数据点中,使用有鉴别信息的距离测度来代替欧式距离测度,提出了一种基于自适应测度的半监督拉普拉斯特征映射相关反馈算法FAD-SSLE(feedback on adaptive distance semi-supervisedlaplacian eigenmaps).在图像检索上的实验结果表明,该方法能够有效地利用少量的监督信息来提高分类和检索性能.
出处 《商丘职业技术学院学报》 2013年第2期27-31,共5页 JOURNAL OF SHANGQIU POLYTECHNIC
基金 国家自然科学基金(编号:NO.90820306)
  • 相关文献

参考文献8

  • 1Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 200,3,15(6).
  • 2Belkin M,Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001.
  • 3Domeniconi C, Peng J, and Gunopulos D. Locally adaptive metric nearest neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9).
  • 4Peng J, Heisterkamp D, and Dai H. Adaptive quasiconformal kernel nearest neighbor classification. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(5).
  • 5S. Amari and S. Wu, Improving support vector machine classifiers by modifying kernel functions, Neural Netw, vol. 12, 1999.
  • 6Vapnik V. The Nature of Statistical Learning Theory. Springer Verlag, 1999.
  • 7Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra, "Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval," IEEE Trans. Circuits and Systems for Video Technology,vol. 8, no. 5, 1998.
  • 8周建新,高科,李锦涛,张勇东,唐胜.图像检索中一种有效的SVM相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(4):535-540. 被引量:10

二级参考文献14

  • 1Han J,Ngan K N,Li Mingjing,et al.A memory learning framework for effective image retrieval[J].IEEE Transactions on Image Processing,2005,14(4):511-524
  • 2Cox I J,Miller M,Minka T P,et al.The Bayesian image retrieval system,PicHunter:theory,implementation,and psychophysical experiments[J].IEEE Transactions on Image Processing,2000,9(1):20-37
  • 3Jing Feng,Li Mingjing,Zhang Hongjiang,et al.A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7):979-989
  • 4Smeulders Arnold W M,Worring Marcel,Santini Simone,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380
  • 5Rui Y,Huang T S,Mehrotra S.Relevance feedback:a powerful tool in interactive content-based image retrieval[J].IEEE Transactions on Circuits Systems for Video Technology,1998,8(5):644-655
  • 6Zhou X S,Huang T S.Relevance feedback in image retrieval:a comprehensive review[J].ACM Multimedia Systems Journal,2003,8(6):536-544
  • 7Peng J,Bhanu B,Qing S.Probabilistic feature relevance learning for content-based image retrieval[J].Computer Vision and Image Understanding,1999,75(1/2):150-164
  • 8Rui Y,Huang T S.Optimizing learning in image retrieval[C] //Proceedings of Computer Vision Pattern Recognition,Hilton Head Island,South Carolina,2000:236-243
  • 9Tong S,Chang E.Support vector machine active learning for image retrieval[C] //Proceedings of the 9th ACM International Conference on Multimedia,Ottawa,2001:107-118
  • 10Chang Chih Chung,Lin Chih Jen.LIBSVM:a library for support vector machines[CP].[2006-7-12].http://www.csie.ntu.edu.tw/~cjlin/libsvm/

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部