期刊文献+

Chen-Lee-Liu方程的自伴性和守恒律 被引量:1

Self-adjointness and Conservation Laws of Chen-Lee-Liu Equation
下载PDF
导出
摘要 通过使用经典对称方法建立了Chen-Lee-Liu方程的李点对称,并且证明了此方程是严格自伴随的.根据Chen-Lee-Liu方程的对称和它的伴随方程构造了它的守恒量,进而得到了关于时间变量t和空间变量x这两个对称的守恒律,而其他对称得到的是平凡的守恒律. With the classical symmetries method,we set up the Lie point symmetries of the ChenLeeLiu e quation. And we demonstrate that it is strictly selfadjoint. Based on the symmetries and the adjoint equations, we derive the conserved vectors of the ChenLeeLiu equation. We find two conservation laws corresponding to the symmetries (translation in t and translation in x) and other symmetries provide trivial conservation law.
出处 《平顶山学院学报》 2013年第2期13-14,17,共3页 Journal of Pingdingshan University
关键词 Chen-Lee-Liu方程 非线性自伴性 守恒律 Chen-Lee-Liu equation nonlinear self-adjointness conservation laws
  • 相关文献

参考文献8

  • 1Chen H H, Lee Y C, Liu C S. Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method [ J ]. Physica Scripta, 1979,20 ( 3 - 4) :490 - 492.
  • 2李向正,张金良.Chen-Lee-Liu方程的精确解[J].兰州理工大学学报,2008,34(2):151-154. 被引量:4
  • 3刘翠莲.Chen-Lee-Liu方程的精确解[J].安徽工业大学学报(自然科学版),2012,29(2):176-179. 被引量:3
  • 4Ibragimov N H. A new conservation theorem [ J ]. J Math A- nal App1,2007,333 ( 1 ) :311 - 328.
  • 5Ibragimov N H. Nonlinear self- adjointness in constructing conservation laws[ J]. Archives of ALGA ,2010 - 2011,7/ 8:1 -99.
  • 6Ibragimov N H. Integrating factors, adjoint equations and Lagrangians [ J ]. J Math Anal Appl, 2006,318 ( 2 ) : 742 - 757.
  • 7Ibragimov N H, Khamitova R S, Valenti A. Self- adjoint- ness of a generalized Ca- massa- Holm equation[ J]. Ap- pl Math Comp,2011,218 (6) :2579 - 2583.
  • 8Lbragimov N H, Torrisi M, Traeina R. Serf - adjointness and conservation laws of a generalized Burgers equation [J]. Phys A: Math Theor, 2011,44 ( 14 ) : 145201 - 145205.

二级参考文献33

共引文献4

同被引文献4

  • 1Wang M L. Solitary Wave Solutions for Variant Boussinesq Equations[J]. Phys Lett A, 1995,199.
  • 2Wang M L, Zhou Y B, Li Z B. Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics [ J ]. Phys Lett A, 1996,216.
  • 3李向正,张金良.Chen-Lee-Liu方程的精确解[J].兰州理工大学学报,2008,34(2):151-154. 被引量:4
  • 4刘翠莲.Chen-Lee-Liu方程的精确解[J].安徽工业大学学报(自然科学版),2012,29(2):176-179. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部