期刊文献+

基于多特征信息融合的目标轨迹聚类方法 被引量:6

Object trajectory clustering method based on multiple features information fusion
下载PDF
导出
摘要 提出了一种基于多特征信息融合的运动目标轨迹聚类方法.针对视频监控目标的特点,引入轨迹均值、距离方向、运动方向和平均速度4个特征空间来描述目标的运动轨迹.首先,采用Mean-Shift算法对每个特征空间进行聚类,得到基本的运动类别信息;其次,设计多特征融合算法,通过计算不同特征空间的类别间关系,进行类别信息融合;最后,得到融合了多个特征空间信息的聚类结果.由于信息融合是在聚类层面进行的,能够有效避免在特征空间层面融合时的维数统一问题.试验结果表明了本方法的有效性. A novel video object trajectory clustering method is presented based on multiple feature information fusion. According to the characteristics of video surveillance objects, four features consisting of the target traj- ectory mean, the directional distance, the motion direction and the average target velocity are selected to de- scribe the trajectory of the objects. Firstly, the well known Mean-Shift algorithm is used to identify the modes and clusters. Then, the multiple features fusion strategy is performed by calculating and comparing the clusters among different feature spaces. Finally, the final common patterns are estimated by fusing the clustering re- sults across all feature spaces. The fusion is carried out at cluster level so that it can avoid the dimensionality problem happened at feature level. Experimental results are also provided to demonstrate the effectiveness of the proposed approach.
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2013年第2期193-198,共6页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(61170116)
关键词 视频监控 多特征融合 MEAN-SHIFT算法 运动检测 visual surveillance multiple feature fusion Mean-Shift clustering method motion detection
  • 相关文献

参考文献15

  • 1MAHDAVIFAR S, ABADI M, KAHANI M, et al. A clustering-based approach for personalized privacy pre- serving publication of moving object trajectory data [ C]//Proceedings of the 6th International Conference on Network and System Security,2012:149-165.
  • 2胡宏宇,王庆年,曲昭伟,李志慧.运动目标空间模式辨识与异常交通行为检测[J].吉林大学学报(工学版),2011,41(6):1598-1602. 被引量:9
  • 3BUZAN D, SCLAROFF and Clustering of Motion S, KOLLIOS G. Extraction Trajectories in Video [ C ]/!Proceedings of the 17th International Conference on Pattern Recognition, 2004:521-524.
  • 4VAKANSKI A, MANTEGH I, IRISH A, et al. Traj- ectory learning for robot programming by demonstration using hidden markov model and dynamic time warping [J]. IEEE Transactions on Systems, Man, and Cy- bernetics, 2012, 42(4): 1039-1052.
  • 5ATEV S, MILLER G, PAPANIKOLOPOULOS N P. Rotation invariant distance measures for trajectories [ C ]//Proceedings of the 10th international Conference on Knowledge Discovery and Data Mining, 2004:707- 712.
  • 6HWANG J R, KANG H Y, LI K J. Spatio-Temporal Similarity Analysis between Trajectories on Road Net- works [ C //Proceedings of the 24th International Con- ference on Perspectives in conceptual modeling. 2005 : 280-289.
  • 7WANG X G, TIEU K, GRIMSON E. Learning seman- tic scene models by trajectory analysis [ C ]//Proceed- ings of the 9th European Conference on Computer Vi- sion, 2006 : 110-123.
  • 8STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 747-757.
  • 9闻佳,崔维.实时视频中的车辆运动轨迹的提取和聚类[J].计算机工程与应用,2010,46(11):155-157. 被引量:8
  • 10袁和金,张艳宁,周涛,佘红伟,李秀秀.基于归一化编辑距离和谱聚类的轨迹模式学习方法[J].计算机辅助设计与图形学学报,2008,20(6):753-758. 被引量:10

二级参考文献60

  • 1代科学,张军,李国辉,来旭.监控视频运动目标的频繁轨迹模式挖掘[J].国防科技大学学报,2006,28(6):108-113. 被引量:5
  • 2李玉鑑.符号序列之间的归一化距离度量[J].北京工业大学学报,2005,31(4):439-442. 被引量:5
  • 3高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 4潘奇明,程咏梅,杨涛,潘泉,赵春晖.真实场景运动目标轨迹有效性判断与自动聚类算法研究[J].计算机应用研究,2007,24(4):158-160. 被引量:9
  • 5Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences[ J]. Image and Vision Computing,2000,18(2) :105 - 135.
  • 6KhaIid S,Nafterl A. Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients[ C ]// Aggarwal J K. Lect Notes Comput Sei. NY :ACM ,2005:45 - 51.
  • 7Wang X G, Tieu K, Grimson E. Learning semantic scene models by trajectory analysis[ C ]//Pinz A. Lect Notes Comput Sci. Berlin : Springer, 2006 : 110 - 123.
  • 8Junejo I N, Foroosh H. Trajectory rectification and path modeling for video surveillance [ C ]//Davies L. Proceedings of the IEEE International Conference on Computer Vision. Brazil:IEEE Press, 2007 : 1 - 7.
  • 9Piciarelli C, Micheloni C, Foresti G L. Trajectory-based anomalous event detection[ J]. IEEE Transactions on Circuits and system for Video Technology, 2008,18(9) :1544 - 1554.
  • 10Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition and-group framework [ C ]//Proceedings of the ACM SIG- MOD International Conference on Management of Data. NY: ACM, 2007:593 - 604.

共引文献31

同被引文献55

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部