期刊文献+

车辆随机振动稳定性分析

Stability analysis of the vehicle random vibration
下载PDF
导出
摘要 以1/4车辆两自由度模型为研究对象,研究了线性与非线性悬架系统车辆行驶的稳定性.在线性悬架系统中,利用虚拟激励法推导出车辆加速度功率谱密度函数表达式,借助MATLAB仿真分析了当车辆各参数在一定范围内变化时车辆行驶的平顺性.当车辆悬架刚度、阻尼等分别作为随机参数,且参数服从正态分布时,利用四阶Runge-kutta数值方法,对非线性悬架系统的动力学行为进行了数值仿真.仿真结果表明,合适的悬架参数,可以有效控制车辆的振动,应当重视车辆线性与非线性悬架参数的选取. By taking two degrees of freedom model of the 1/4 vehicles as the study object, per analyzes the vehicle stability in both linear and nonlinear suspension systems. In th suspension system, Pseudo Excitation Method is density function expression .of the vehicle. When certain range, MATLAB is used to simulate the the pa-inear adopted to derive acceleration power spectral parameters of the vehicle are changed within a riding comfort of the vehicle. In the nonlinear suspension system, when vehicle suspension stiffness and damping are respectively taken as ran- dom parameters and meanwhile these parameters follow the normal distribution, the numerical method of Fourth-order Runge-kutta is employed to simulate the dynamic behavior of the system. The above two simulations show that appropriate parameters of the suspension can effectively control the vibration of the vehicle and that attention should be paid to the selection of the param-eters of vehicle linear and nonlinear suspension.
出处 《山东理工大学学报(自然科学版)》 CAS 2013年第1期5-8,共4页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11262009) 甘肃省自然科学基金资助项目(1208RJZA111)
关键词 非线性悬架 随机振动 1 4车辆 nonlinear suspension random vibration 1/4 vehicle
  • 相关文献

参考文献4

二级参考文献23

  • 1周志强,高浩.非线性解耦控制与飞机敏捷性机动[J].飞行力学,1995,13(3):37-44. 被引量:18
  • 2李韶华,杨绍普.一种非线性汽车悬架的亚谐共振及奇异性[J].振动工程学报,2007,20(2):168-173. 被引量:7
  • 3林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93.
  • 4余志生.车辆理论[M].北京:机械工业出版社,1992.
  • 5林家浩.海洋平台对不规则波的随机响应及在DASOSJ的实现.大连工学院学报,1996,25(2):1-8.
  • 6Kim C, Ro P I. A sliding mode controller for vehicle active suspension systems with non-linearities [ J ]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1998, 212(2): 79-92.
  • 7Zhu Q, Ishitobi M. Chaotic oscillations of a nonlinear two degrees of freedom system with air springs [ J ]. Dynamics of Continuous Discrete and Impulsive Systems: Series B, 2007, 14 ( 1 ) : 123- 133.
  • 8Verros G, Natsiavias S, Stepan G, et al. Control and dynamics of quarter-car models with dual-rate damping[ J]. Journal of Vibration and Control, 2000(6) : 1045-1063.
  • 9Gobbi M, Mastinu G. Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles [ J ]. Journal of Sound and Vibration, 2001 (245) : 457-481.
  • 10Jiang Lixia, Li Wanxiang. Chaotic vibration of a nonlinear quarter- vehicle model [ C ]//IEEE Vehicle Power and Propulsion Conference: Harbin, China: Sep. 3-5, 2008. United States: Inst. of Elec. and EIec. Eng. Computer Society, 2008: 1-4.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部