期刊文献+

基于模糊综合评价的道路交通状态判别方法研究 被引量:1

A method for road traffic state analysis based on fuzzy comprehensive evaluation
下载PDF
导出
摘要 选取路段的平均行程车速、时间占有率以及交叉口平均延误为特征参数设计道路交通状态判别分析模型,根据采集到的交通信息数据,运用模糊综合评价方法判别道路交通的实时状态.实验结果表明,传统的方法对单个特征参数根据判别阈值得到的道路交通状态判别结果波动性大、精度不高,通过将其进行模糊综合评价后,判别结果有了较好的稳定性和准确性,所提出的算法能够提高交通状态判别的精度. The average travel speed,time occupancy ratio and average stop delay were selected as the characteristic parameters for the design of road traffic state identification analysis model.According to the collected traffic information,the fuzzy comprehensive evaluation method was used to discriminate road traffic real-time state.The experimental result shows that the traffic state discrimination result from a single parameter based on the discriminated threshold was volatile and inaccurate.The discrimination result has a good stability and accuracy after fuzzy comprehensive evaluation,and the proposed algorithm can improve the accuracy of traffic state identification.
作者 渐猛 张俊友
出处 《山东理工大学学报(自然科学版)》 CAS 2013年第2期19-22,共4页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省中青年科学家科研奖励基金(BS2011DX030)
关键词 道路交通状态 模糊综合评价 平均行程车速 时间占有率 平均延误 road traffic state fuzzy comprehensive evaluation average travel speed time occupancy ratio average stop delay
  • 相关文献

参考文献2

二级参考文献8

  • 1Jiuyi Hua, Ardeshir Faghri. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [R] .Transportation research Record 1399:14-19.
  • 2Adel W Sadek, Michael J Demetsky, Brain L Smith. Case-Basd Reasoning for Real-Time Traffic Flow Wanagement [J] .Computer-Aided Civil and Infrastructure Engineering, 1999, 14: 347-356.
  • 3Attor Sanju Nair,Jyh-Charn Liu,Laurence Rilett,Saurabh Gupta.Non-Linear Analysis of Traffic Flow.2001 IEEE Intelligent Transportation Systerns Conference Proceedings, 2001: 683- 687.
  • 4Hojjat Adeli, Asim Karim.Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection [J] .Journal of Transportation Engineering, 2000:464-471.
  • 5Karlene A Kosanovich, Michael J Piovoso.PCA of Wavelet Transformed Process Data for Monitoring[J] .Intelligent Data Analysis, 1997 (1) :85-99.
  • 6Vladimir N Vapnik.Statistical Learning Theory [M] .New Yolk: Wiley, 1988.
  • 7Vladimir N Vapnik.The Nature of Statistical Learning Theory [M] .New York: Springer, 1995.
  • 8PARAMICS Use, Guide-Version 3.0.U.K.Quadstone Limited[R] .Edinburgh, 1999.

共引文献43

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部