期刊文献+

乙炔羰基化合成丙烯酸甲酯催化性能的人工神经网络模拟 被引量:1

GARBF Artificial Neural Network Simulation of the Catalytic Performance of the Synthesis of Methyl Acrylate via Acetylene Carbonylation
下载PDF
导出
摘要 通过神经网络技术可找出催化工艺与催化性能之间的关联性,从而对催化性能进行预测,达到提高研究效率的目的。本文针对训练样本中奇异样本对神经网络模型预测能力和泛化能力的影响,将遗传算法思想引入神经网络,构建神经网络模型动态训练集,建立了遗传算法-神经网络模型(GARBF);利用GARBF模型对乙炔羰基化合成丙烯酸甲酯催化性能进行预测模拟。结果表明:与RBF相比,GARBF的预测精度明显提高,对于六组测试集,平均相对误差从2.94%降低到1.18%,体现了更强的泛化能力。 Through the neural network technology, the correlation between catalytic process and catalytic performance can be found,and the catalytic performance can be forecasted, so as to improve the research efficiency. In view of the influence of the abnormal training samples on the prediction ability and the genealization capacity of the neural network model. This paper intro-duces genetic algorithm(GA)into neural network to construct neural network dynamic training set, and to establish GARBF neural network model, which is used in the prediction simulation of the catalytic performance of the synthesis of methyl acrylate via acetylene carbonylation. Compared with RBF,the prediction ability of GARBF improved obviously. The average relative er-ror of the six groups of test sets has been reduced from 2. 94% to 1.18% ,demonstrating stronger generalization capacity.
出处 《石河子大学学报(自然科学版)》 CAS 2013年第2期230-235,共6页 Journal of Shihezi University(Natural Science)
基金 新疆兵团博士基金项目(2011BB011) 石河子大学高层次人才科研启动资金项目(RCZX200807)
关键词 神经网络 RBF GARBF 预测 催化 neural networks RBF GARBF prediction catalyze
  • 相关文献

参考文献4

二级参考文献16

  • 1辛采芬,钱新荣.电石乙炔制化工产品路线评述[J].化学进展,1994,6(1):62-84. 被引量:16
  • 2曾毅,王公应.天然气制乙炔及下游产品研究开发与展望[J].石油与天然气化工,2005,34(2):89-93. 被引量:24
  • 3薛祖源.丙烯酸(酯)生产工艺技术评析和今后发展意见(上)[J].上海化工,2006,31(3):40-44. 被引量:9
  • 4张家琪,J Nat Gas Chem,1997年,6卷,2期,169页
  • 5Karl Doerner,Walter J. Gutjahr,Richard F. Hartl,Christine Strauss,Christian Stummer.Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection[J].Annals of Operations Research (-).2004(1-4)
  • 6P. Ting,,R. A. Iltis.Multitarget motion analysis in a DSN[].IEEE Transactions on Systems Man and Cybernetics.1991
  • 7M. Oussalah,,J. De Schutter.Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter[].Journal of Information Science.2002
  • 8S. J Julier,,J. K. Uhlmann.A New extension of the Kalman filter to nonlinear systems[].Proc of the th Int Symp On Aerospace/Defence Sensing Simulation and Controls.1997
  • 9L. Chen,,N. Tokuda.A fast data assignment algorithm for maximum likelihood-based multitarget motion tracking with bearings-only measurements[].Mathematics and Computers in Simulation.2001
  • 10K. Dogancay.Passive emitter localization using weighted instru- mental variables[].Signal Processing.2004

共引文献13

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部