期刊文献+

Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact 被引量:3

Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact
原文传递
导出
摘要 我们在场电气化学地成年的 ultrathin 上的电场效果的研究,有在测微计范围的 15 nm 和长度的最小的直径的直铂 nanowires,在 H2PtCl6 在在金属电极之间的硅氧化物底层上综合了答案。platinumcontaining 酸和 nanowires 的直径上的应用电压的频率的集中的影响与相应理论分析被讨论。,我们由金属电极的特定的几何学第一次证明电场介绍,戏剧性地影响 nanowires 的生长和形态学。最后,我们为控制制造提供指南,消除分叉并且联系直, ultrathin 金属电线并且树枝状的生长,它是当前的自底向上的纳米技术的主要缺点之一。建议概念薄 nanowires 自己组装,由电场影响了,潜在地经由电极几何学的聪明的设计为指导 nanocontacting 代表一条新线路。从 nanoelectronics 的可能的应用活动范围到煤气的传感器和生物传感器。 We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtC16 solution. The influence of the concentration of the platinum- containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.
出处 《Nano Research》 SCIE EI CAS CSCD 2013年第5期303-311,共9页 纳米研究(英文版)
关键词 电场分布 自底向上 纳米线 含铂 合成 电化学生长 超薄 金属电极 bottom-up growth,directed electrochemicalnanowire assembly(DENA),metal nanowires,nanostructuring,nanoelectronics,local electric field
  • 相关文献

参考文献33

  • 1Cheng, G.; Siles, P. F.; Bi, F.; Cen, C.; Bogorin, D. F.; Bark, C. W.; Folkman, C. M.; Park, J.-W.; Eom, C.-B.; Medeiros-Ribeiro, G.; et al. Sketched oxide single-electron transistor. Nat. Nanotechnol. 2011, 6, 343-347.
  • 2Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schroder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74—78.
  • 3Wang, D.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 2006, 6, 1096-1100.
  • 4Kuzyk, A. Dielectrophoresis at the nanoscale. Electrophoresis 2011,32, 2307-2313.
  • 5Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112-115.
  • 6Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010,10, 1529-1536.
  • 7Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Technologies for nanofluidic systems: Top-down vs. bottom-up—A review. Lab Chip 2005, 5, 492-500.
  • 8He, B.; Morrow, T. J.; Keating, C. D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522-528.
  • 9Lai, S.; Hafher, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887-1895.
  • 10Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290-313.

同被引文献7

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部