期刊文献+

增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用 被引量:16

Gain adaptive sliding mode controller for flight attitude control of MAV
下载PDF
导出
摘要 针对微型飞行器的姿态角摄动引起的系统不确定性及外界干扰等问题,提出了基于区间二型模糊神经网络辨识的增益自适应模糊控制器。首先,给出了微型飞行器姿态动力学模型。然后,采用区间二型模糊神经网络对滑模控制器中由于姿态角摄动引起的系统不确定性进行在线辨识,通过增益自适应滑模控制器中的校正控制项对辨识误差及负载干扰进行补偿。最后,通过设计李亚普诺夫函数,得到闭环系统一致稳定条件下的区间二型模糊神经网络参数在线调整的自适应律及滑模增益自适应律。仿真对比表明,与传统的增益自适应滑模控制器和基于一型模糊神经网络辨识的滑模控制器及相比,本文提出的控制器不仅对系统的不确定性因素及外界干扰具有较强的鲁棒性,而且稳定误差小,跟踪精度高。 A gain adaptive sliding mode controller based on interval type-II fuzzy neural network identification was proposed to handle the system uncertainty and the external disturbances come from the attitude angle disturbance of a Micro Aircraft Vehicle(MAV).Firstly,the attitude dynamical model of MAV was established.Then,the interval type-II fuzzy neural network was used to approximate the nonlinearity function and uncertainty functions in the attitude angle dynamic model of the MAV.The correct items from the gain adaptive sliding mode controller were taken to compensate identification errors and load disturbances.Finally,Lyapunov stability theorem was designed and the adaptive law and the sliding mode gain adaptive law for adjusting on line interval type-II fuzzy neural network parameters were obtained under the condition of asymptotic stability of the closed-loop system.The numerical simulation and comparison were performed and the results show that the proposed control system has not only stronger robustness to system uncertainty and external disturbances but also more excellent steady characteristics and tracking accuracy as compared with the conventional adaptive sliding model controller and the type-I fuzzy neural network based sliding mode controller.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第5期1183-1191,共9页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50905174) 吉林省自然科学基金资助项目(No.20101530)
关键词 微型飞行器 滑模控制器 姿态控制 模糊神经网络 李亚普诺夫函数 Micro Aircraft Vehicle(MAV) sliding mode controller attitude control fuzzy neural network Lyapunov function
  • 相关文献

参考文献12

二级参考文献51

  • 1张友旺,桂卫华,赵泉明.基于动态递归模糊神经网络的自适应电液位置跟踪系统[J].控制理论与应用,2005,22(4):551-556. 被引量:15
  • 2郑晓虎,朱荻.模糊神经网络在UV-LIGA工艺优化中的应用[J].光学精密工程,2006,14(1):139-144. 被引量:17
  • 3贾振元,顾丰,王福吉,周明.基于信噪比与灰关联度的电火花微小孔加工工艺参数的优化[J].机械工程学报,2007,43(7):63-67. 被引量:36
  • 4WANG W M, RAJURKAR K P, AKAMATSU K. Digital gap monitor and adaptive integral control for auto-jumping in EDM [J]. Manuf, Sci. and Eng. ,ASME: 1995,117 (2) :253-258.
  • 5RAJURKAR K P, WANG W M. Improvement of EDM performance with advanced monitoring and control systems [ J]. Manuf. Sci. and Eng., ASME.. 1997,119(4b) :770-775.
  • 6BOCCADORO M, DAUW D F. About the application of fuzzy controllers in high-performance diesinking EDM machines[J]. Ann. CIRP: 1995,44 (1) :147-150.
  • 7TARNG Y S, JANG J L. Genetic synthesis of a fuzzy pulse discriminator in electrical discharge machining[J]. Intell. Manuf. ,1996,7(4):311-318.
  • 8TARNG Y S, TSENG C M, CHUNG L K, A fuzzy pulse discriminating system for electrical discharge machining[J]. Mach. Tools Manuf . ,1997, 37(4) :511-522.
  • 9LIU H S, TARNG Y S. Monitoring of the electrical discharge machining process by abductive networks[J]. Adv. Manuf. Technol. , 1997,13(4) :264-270.
  • 10LIN C L, LIN J L, KO T C. Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method[J]. Adv. Manuf . Technol. ,2002,19(4):271-277.

共引文献70

同被引文献144

引证文献16

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部