期刊文献+

评定平面度误差的几何搜索逼近算法 被引量:19

Geometry searching approximation algorithm for flatness error evaluation
下载PDF
导出
摘要 为了快速准确地评定机械零件的平面度误差,提出了基于几何搜索逼近的平面度误差最小区域评定算法。阐述了利用几何优化搜索算法求解平面度误差的过程和步骤,给出了数学计算公式。首先选择被测平面的3个边缘点为参考点构造辅助点、参考平面和辅助平面,然后以参考平面和辅助平面为假定理想平面,计算测量点至这些理想平面的距离极差;通过比较判断及改变参考点,构造新的辅助点、参考平面和辅助平面,最终实现平面度误差的最小区域评定。用提出的方法对一组测量数据进行了处理。结果表明,在终止搜索的条件为0.000 01mm时,几何搜索逼近评定算法的结果分别比凸包法、计算几何法、最小二乘法、遗传算法和进化策略计算的结果减小了17.1、7.3、18.03、6.13和0.3μm。得到的数据显示该算法不仅能准确地得到最小区域解,而且计算结果有良好的稳定性,适合在平面度误差测量仪器和三坐标测量机上使用。 To evaluate the flatness errors of mechanical parts accurately and rapidly,an algorithm using geometry searching approximation to evaluate the flatness error minimum zone was presented.The principle and steps of the algorithm to solve the flatness error was described in detail and the mathematical formulas were given.First,the three edge points of the measured plane were selected as reference points,and the auxiliary points,reference plane and auxiliary planes were constructed based on the reference points.Then,the distance differences of all measurement points to the supposed ideal planes were calculated by taking the reference plane and auxiliary planes as supposed ideal planes.The reference points,auxiliary points,reference plane and auxiliary planes were reconstructed by comparing the distance differences.Finally,by repeating this processes,the minimum zone evaluation for flatness error was implemented.The method was used to process a group of metrical data,and the results indicate that the flatness error value from this algorithm can be reduced by 17.1,7.3,18.03,6.13 and 0.3 μm respectively as compared with those from the convex hull method,computational geometric method,least square method,genetic algorithm and the evolutionary strategy when the criteria of stop searching is 0.000 01 mm,The results demonstrate that the algorithm can get not only the minimum zone solution accurately but also has good stability.It is suited for the evaluation of flatness error measuring instruments and Coordinate Measuring Machines(CMMs).
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第5期1312-1317,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50875076) 河南省基础与前沿技术研究计划资助项目(No.122300410114 No.122300413209)
关键词 平面度误差 误差评定 几何搜索逼近 最小区域 flatness error error evaluation geometry searching approximation minimum zone
  • 相关文献

参考文献9

二级参考文献48

  • 1崔长彩,黄富贵,张认成,李兵.粒子群优化算法及其在圆柱度误差评定中的应用[J].光学精密工程,2006,14(2):256-260. 被引量:20
  • 2崔长彩,李兵,张认成.粒子群优化算法[J].华侨大学学报(自然科学版),2006,27(4):343-347. 被引量:16
  • 3温秀兰,赵茜.基于进化策略的平面度误差评定[J].仪器仪表学报,2007,28(5):832-836. 被引量:15
  • 4李士勇.模糊控制、智能控制和神经控制[M].哈尔滨:哈尔滨工业大学出版社,1998..
  • 5CUI CH C, LI B, HUANG F G, et al.. Genetic algorithm based from error evaluation[J]. Measurement Science and Technology, 2007, 18 (7): 1818-1822.
  • 6ZHANG K. Spatial straightness error evaluation with an ant colony algorithm[C]. Proceedings of the IEEE International Conference on Granular Computing (GRC 08), IEEE Press, 2008 : 793- 796.
  • 7WEN X L, HUANG J C, SHENG D H, et al.. Conicity and cylindricity error evaluation using particle swarm optimization[J].Precision Engineering, 2010,34:338-344.
  • 8KARABOGA D, An idea based on honey bee swarm for numerical optimization [R]. Technical Report TR06, ErciyesUniversity, 2005.
  • 9KARABOGA D, BASTURK B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1) : 687-697.
  • 10KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm [J]. Applied Mathematics and Computation, 2009, 214 (1) : 108-132.

共引文献87

同被引文献137

引证文献19

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部