期刊文献+

磨粒叶序排布砂轮磨削的磨削力模拟分析 被引量:1

Simulation Analysis of Grinding Force of the Grinding Wheel with Phyllotactic Pattern
下载PDF
导出
摘要 为了改善超硬磨料砂轮的磨削能力,基于生物学的叶序排布理论,提出了一种新型有序化排布磨料的超硬磨料砂轮。利用Ls-dyna仿真软件的光滑粒子法(SPH),对叶序排布砂轮进行了磨削力的分析研究,得出了叶序参数和磨削用量对磨粒叶序排布外圆砂轮磨削力的影响规律。仿真结果表明,合理地选择叶序系数k和磨料半径r,可以使叶序排布砂轮在磨削过程中获得较低的磨削力。 In order to achieve the grindability of superabrasive grinding wheel,a new kind of the superabrasive grinding wheel,which has presented abrasive grain pattern, was designed based on the phyllotaxis theory of biology. The grinding force of the superabrasive grinding wheel with phyllotactic pattern was analyzed by using the smoothed particle hydrodynamics(SPH) of I.s dyna simulation software,and the influence of the phyllotactic parameters of the grinding wheel and grinding parameters on the grinding force were obtained. The simulation results showed that the grinding force can be decreased when the phyllotactic parameters of the grinding wheel are reasonably selected.
机构地区 沈阳理工大学
出处 《新技术新工艺》 2013年第5期59-62,共4页 New Technology & New Process
基金 国家自然科学基金资助项目(51175352)
关键词 工程化砂轮 叶序排布 磨削力 光滑粒子 engineered grinding wheel, phyllotactic pattern,grinding force,SPH
  • 相关文献

参考文献9

  • 1Aurich J C,Braun O,Wamecke G. Development of a su-perabrasive grinding wheel with defined grain structure usingkinematic simulation[J]. CIRP Annals-Manufacturing Tech-nology,2003,52(1) :275-280.
  • 2Koshy P,Wasaki A I, Elbestawi M . Surface generationwith engineered diamond wheels: insights from simulation[J]. Annals of the CIRP ,2003,52(1):271-274.
  • 3Pinto F W, Vargas G E, Wegener K. Simulation for opti-mizing grain pattern on Engineered Grinding Tools[J]. CIRPAnnals-Manufacturing Technology, 2008 ,57 : 353-356.
  • 4傅玉灿,徐鸿钧.高效磨削用砂轮地貌的优化设计研究[J].应用科学学报,2001,19(1):48-52. 被引量:9
  • 5韩旭,杨刚.光滑粒子流体动力学-------种无网格粒子法[M].强洪夫,译.长沙:湖南大学出版社,2005.
  • 6Yeatts F R. A growth-controlled model of the shape of asunflower head [ J ]. Mathematical Biosciences. 2004 , 187 :205-221.
  • 7Przemyslaw P,James H,David F F,et al. The algorith-mic beauty of plants[M]. Regina:Springer-Verlag, 1990.
  • 8宿崇,唐亮,侯俊铭,王宛山.基于FEM与SPH耦合算法的金属切削仿真研究[J].系统仿真学报,2009,21(16):5002-5005. 被引量:14
  • 9任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011.

二级参考文献14

  • 1丁峻宏,金先龙,郭毅之,汤华,杨洪杰.土壤切削大变形的三维数值仿真[J].农业机械学报,2007,38(4):118-121. 被引量:37
  • 2臼井英治 高希正 等.切削磨削加工学[M].北京:机械工业出版社,1982.295-298.
  • 3小野浩二 高希正等(译).理论切削学[M].北京:国防工业出版社,1985.208-211.
  • 4Melkote S N, Liu K. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process [J]. International Journal of Mechanical Sciences (S0020-7403), 2007, 49(5): 650-660.
  • 5Jawahir I S, Ee K C, Dilon O W. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius [J]. International Journal of Mechanical Sciences (S0020-7403), 2005, 47(10): 1611-1628.
  • 6Liu C R, Guo Y B. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer [J]. International Journal of Mechanical Sciences (S0020-7403), 2000, 42(9): 1069-1086.
  • 7Libersky L D, Petschek A G, Carney T C, et al. High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics (S0021-9991), 1993, 109(1): 67-75.
  • 8Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations [J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 1996, 139(1-4): 347-73.
  • 9Monaghan J J. Shock simulation by the particle method SPH [J]. Journal of Computational Physics (S0021-9991), 1983, 52: 374-389.
  • 10Benz W, Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications (S0010-4655), 1995, 87(1-2): 253-65.

共引文献64

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部