期刊文献+

基于压缩传感的多尺度传感器融合

Multi-scale Sensor Fusion Based on Compressed Sensing
下载PDF
导出
摘要 针对传统采样理论需要采集大量观测数据所带来的存储、传输以及经济方面的压力,提出了一种基于压缩传感理论的多尺度传感器融合方法。分析了基于压缩传感理论的重构算法的设计问题,采用曲线拟合方法对多尺度的传感器的时间配准。仿真结果表明,基于正交匹配追踪算法几乎可以完全重构原始信号。与传统采样算法相比,虽然精度没有传统的方法高,但是在误差允许范围内,采集的数据少,所需时间少,减少了数据的传输和存储成本。 An algorithm of multi-scale sensor fusion based on compressed sensing theory was proposed in this paper,owing to the pressure of storage,transmission as well as economy which were caused by the traditional sampling theory.The design method of reconstruction algorithm based on the compressed sensing theory was analyzed.The curve fitting method was utilized to the time registration of multi-scale sensing fusion.The simulation results show that the algorithm of orthogonal matching pursuit could recover the original signal.To compare with the traditional sampling algorithm,the accuracy is lower.However,the cost of data transmission and storage could be reduced.
出处 《计算机与数字工程》 2013年第5期726-728,745,共4页 Computer & Digital Engineering
基金 中国自然科学基金项目(编号:61104186 6127306) 江苏省自然科学基金(编号:BK2012801) 2011年江苏省普通高校研究生研究创新计划项目(编号:CXLX11-0261)资助
关键词 压缩传感 重构算法 曲线拟合 多尺度传感器 compressed sensing reconstruction algorithm curve fitting multi-scale sensor
  • 相关文献

参考文献14

  • 1D. Donoho. Compressed sensing[J]. IEEE Transactions on In formation Theory, 2006,52 (4) : 1289-1306.
  • 2SHI Guangming, LIN Jie, CHEN Xuyang, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Transactions On circuits and systems- II : Express briefs, 2008,55 (4) : 379-383.
  • 3J. Haupt, R. Nowak. Signal reconstruction from noisy random projections [J]. IEEE Transactions on Information Theory, 2006,52(9) :4036- 4048.
  • 4D. Baron, M. Wakin, M. Duarte, et al. Distributed com pressed sensing[R]. Technical Report, Rice University,2006.
  • 5W. Wang, M. Garofalakis, K. Ramchandran. Distributed sparse random projections for refinable approximation [C]// Proceedings of the 6th International ymposium on Information Processing in Sensor Networks, New York, Association for Computing Machinery, 2007 : 331-339.
  • 6肖龙帅,黄华,夏建刚,李灵.压缩传感方位估计[J].通信技术,2009,42(11):182-184. 被引量:2
  • 7赵贻玖,戴志坚,王厚军.基于压缩传感理论的随机等效采样信号的重构[J].仪器仪表学报,2011,32(2):247-251. 被引量:24
  • 8周瑞.基于压缩传感的随机滤波器设计[J].科技信息,2011(6):342-342. 被引量:3
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 10C. La, M. N. Do. Signal reconstruction using sparse tree representation[C]//Proceedings of SPIE. San Diego, CA, United States: International Society for Optical Engineering, 2005,5914:1-11.

二级参考文献126

  • 1潘泉 ,崔培玲 ,张磊 ,张洪才 .基于一般紧支撑小波的一类动态多尺度系统最优估计算法[J].自动化学报,2005,31(3):385-393. 被引量:4
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献769

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部