期刊文献+

一类二阶时滞微分方程脉冲解的存在性与指数稳定性 被引量:1

Existence and Exponential Stability of the Impulsive Solution for Delayed Differential Equations
下载PDF
导出
摘要 研究了一类二阶时滞微分方程,利用Schaefer不动点定理做工具论证了方程在脉冲条件下解的存在性,通过构造合适的李雅普诺夫函数证明方程的非平凡解在区间[t0,+∞)上是可脉冲指数稳定的,最后给出解可指数稳定的2个实例. A class of the second order delayed differential equations is studied. Using Schaefer fixed point theorem, the existence of solution to the given model with impulse is proved and the proper Lyapunov functional is conducted to obtain that the nontrivial solution of the equation can be exponentially stabilized on [ t0, + ∞ ). Two examples are given in the end.
作者 王宗毅
机构地区 惠州学院数学系
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期22-27,共6页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金数学天元基金项目(11226320) 广东省自然科学基金项目(S2011040003733)
关键词 时滞微分方程 脉冲解 Schaefer不动点定理 指数稳定性 LIAPUNOV函数 delayed differential equation impulsive solution Schaefer fixed point theorem exponential stability Liapunov functional
  • 相关文献

参考文献9

  • 1ANOKHIN A, BEREZANSK L, BRAVERMAN E. Expo- nential stability of linear delay impulsive differential equa- tions [ J ]. Math Anal Appl, 1995,195:923 - 941.
  • 2BENCHOHRA M, HENDERSON J, NTOUYAS S K, et al. Higher order impulsive functional differential equa- tions with variable times [ J ], Dynam Syst Appl, 2003, 12:38 -392.
  • 3FENG Weizhen, CHEN Yongshao. The weak exponential asymptotic stability of impulsive differential system [ J ]. Appl Math Chinese Univ, 2002,1 : 1 - 6.
  • 4LI Xiang, WENG Peixuan. Impulsive stabilization of two kinds of second-order linear delay differential equations [J]. Math Anal Appl, 2004,291:270 -281.
  • 5LIU X. Stability results for impulsive differential systems with applications to population growth models[J]. Dynam Stability Systems, 1995,10:5 - 12.
  • 6GIMENES L P, FEDERSON M. Existence and impulsive stability for seeond order retarded differential equations [ J]. Appl Math Comput, 2006,177:44 -62.
  • 7LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[ M]. Singa- pore : World Scientific, 1989.
  • 8SMART D R. Fixed point theorems [ M ]. Cambridge: Cambridge University Press, 1980.
  • 9匡继昌.常用不等式[M].3版.济南:山东科技出版社,2003.

共引文献1

同被引文献8

  • 1Dingheng Pi. On the stability of a second order retarded differential equation [J].Applied Mathematics and Com- putation, 2015,256 : 324-333.
  • 2Guiling Chen, Onno van Gaans, Sjoerd Verduyn Lunel. Asymptotic behavior and stability of second order neutral delay differential equationsl-J]. Indagationes Mathemati- cae, 2014,25 : 405-426.
  • 3Leonid Berezansky, Alexander Domoshnitsky, Mikhail Gitman,Valery Stolbov. Exponential stability of a second order delay differential equation without damping term [J]. Applied Mathematics and Computation, 2015,258: 483-488.
  • 4Xiang Li, Peixuan Weng. Impulsive stabilization of two kinds of second-order linear delay differential equations[J].J Math Anal Appl,2004,291:270-281.
  • 5Aizhi Weng, Jitao Sun. Impulsive stabilization of second- order delay differential equations[J]. Nonlinear Analysis: Real World Applications, 2007,8 : 1410-1420.
  • 6L P Gimenes, M Federson. Existence and impulsive stabili- ty for second order retarded differential equations[J]. Ap- plied Mathematics and Computation, 2006,177 : 44-62.
  • 7廖成斌,赵立春.二阶时滞微分方程的脉冲指数稳定性[J].兰州交通大学学报,2009,28(1):157-160. 被引量:1
  • 8黄灿云,赵立春,赵闽.一类二阶时滞微分方程的脉冲指数稳定性[J].甘肃科学学报,2009,21(2):10-13. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部