期刊文献+

木堆积结构光子晶体中辐射子簇的非指数衰减动力学研究

Nonexponential Decay Dynamics of Emitter Ensembles in Woodpile Photonic Crystals
下载PDF
导出
摘要 在低折射率对比的木堆积光子晶体结构中,讨论了光子晶体元胞内辐射子簇自发辐射速率分布和非单指数衰减动力学问题.结果表明,自发辐射速率分布和辐射子簇的衰减快慢很大程度上依赖于辐射子的跃迁频率.辐射子跃迁频率位于光子带隙上带边的自发辐射速率慢于位于赝带隙中心的速率,这与传统理论不符.定义的衰减函数,计算的平均衰减寿命和实验结果吻合.这些结果为实验探测时间分辨衰减动力学以及局域态密度提供了理论依据. Spontaneous decay rate distributions and nonexponential decay rates of the excited emitter ensembles embedded in the basic unit cell of woodpile photonic crystals with low refractive index contrast are investigated. It is found that the spontaneous emission rate distributions and the decay rates of the emitter ensembles strongly depend on the transition frequency of the emitters. The decay rates of emitters near the upper gap edge are slower than that in the center of the pseudo-gap, which is quite a contrast to the conventional concept. Based on the decay function, the average decay lifetime is calculated. The calculation results fit the experiment well and show exactly the same trend as the experiments. These results may be supplied in probing the decay rate distribution or local density of states in future experiments.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期49-52,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11204089 11104083)
关键词 自发辐射 速率分布 局域态密度 非指数衰减 spontaneous emission decay rate distribution local density of states nonexponential decay
  • 相关文献

参考文献1

二级参考文献11

  • 1[11]Wang X H,Wang R Z,Gu B Y et al.Phys.Rev.Lett.,2002,88:093902-1
  • 2[1]Yablonovitch E.Phys.Rev.Lett.,1987,58:2059
  • 3[2]John S.Phys.Rev.Lett.,1987,58:2486
  • 4[3]Martorell J,Lawandy N M.Phys.Rev.Lett.,1990,65:1877
  • 5[4]Tong B Y,John P K,Zhu Y-T et al.1993,10:356
  • 6[5]Petrov E P,Bogomolov V N,Kalosha I I et al.Phys.Rev.Lett.,1998,81:77
  • 7[6]Megens M,Wijnhoven G E J G,Lagendijk A et al.Phys.Rev.A,1999,59:4727;Megens M,Schriemer H P,Lagendijk A et al.Phys.Rev.Lett.,1999,83:5401;Petrov E P,Bogomolov V N,Kalosha I I et al.Phys.Rev.Lett.,1999,83:5402
  • 8[7]John S,Wang J.Phys.Rev.Lett.,1990,64:2418;Phys.Rev.B,1991,43:12772;John S,Quang T.Phys.Rev.A,1994,50:1764;Phys.Rev.A,1997,56:4273;Phys.Rev.Lett.,1995,74:3419;Phys.Rev.A,1996,76:1320
  • 9[8]Zhu S Y et al.Phys.Rev.Lett.,2000,84:2136;Yang Y,Zhu S Y.Phys.Rev.A,2000,62:013805
  • 10[9]Li Z Y,Lin L L,Zhang Z Q.Phys.Rev.Lett.,2000,84:4341;Li Z Y,Xia Y.Phys.Rev.A,2001,63:043817-1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部