期刊文献+

具有阶段结构且发生率为双线性的SIR传染病模型 被引量:1

The SIR epidemic model with stage structure and bilinear incidence rate
下载PDF
导出
摘要 将种群分为成年与幼年两个阶段,且只考虑疾病在成年个体中传播,建立了具有阶段结构且发生率为双线性的SIR传染病模型,证明了系统解的有界性,并利用V函数法分析了模型的渐近性质和其平衡点的局部渐近稳定性,并且得到了疾病最终灭绝的条件. In this paper,the population is divided into two stage of immature and mature. It is considered that the disease spread in mature individuals only. Under these assumptions, the SIR epidemic model with stage structure and hilinear incidence rate is boundness of solution is proved. The asymptotic properties of the model ymptotic stability of the equilibrium point are analyzed by the theory of V f more,the conditions for the eventual extinction of the disease are obtained. constructed. The and the local as- unction. Further-more,the conditions for the eventual extinction of the disease are obtained.
作者 张慧敏
机构地区 中北大学理学院
出处 《陕西科技大学学报(自然科学版)》 2013年第3期157-160,共4页 Journal of Shaanxi University of Science & Technology
关键词 阶段结构 SIR模型 渐近稳定 stage structure SIR model asymptotic stability
  • 相关文献

参考文献9

  • 1E. Beretta, Y. Takeuchi. Convergence results in SIR epi demic model with varying population sizes[J]. Nonlinear Anal. ,1997,28(12):1 909-1 921.
  • 2A. Korobeinikov. I.yapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission[J]. Bull. Math. Biol. , 2006,68 (3): 615- 626.
  • 3Miklos Farkas. Dynamical Models in Biology[_M]. Aca dernic Press,2001.
  • 4Wang Wendi, Chen Lansun. A Predator-prey System with Stage-structure for Predator[J]. Computers Mathemat- ics with Applications,1997,33(8):83-91.
  • 5原存德,胡宝安.具有阶段结构的SI传染病模型[J].应用数学学报,2002,25(2):193-203. 被引量:51
  • 6胡宝安,陈博文,原存德.具有阶段结构的SIS传染病模型[J].生物数学学报,2005,20(1):58-64. 被引量:20
  • 7郑丽丽,柳合龙.按时滞转化的阶段结构SIS传染病模型[J].数学的实践与认识,2005,35(7):159-166. 被引量:2
  • 8J. D. Murray. Mathematical biology[M]. Springer, 1993.
  • 9Yang Kuang. Delay differential equation with application in population dynamics[M]. Academic Press, Inc, 1993: 76k77.

二级参考文献9

  • 1Walter G, Alello, Freedman H I. A time-delay of single species growth with stage structure[J]. Mathematical Bioscience, 1990, 101:139-153.
  • 2Walter G, Alello Freedman H I, Wu J. Analysis of a model representing stage-structured populations growth with stage-dependent time delay[J]. SIAM J Appl Math, 1992, 52(3):855-869.
  • 3Yang Kuang. Delay Differential Equation with Applications in Population Dynamics[M]. Boston: Academic Press Inc. 1993, 76-77.
  • 4Walter G Alello. Freedman H 1. A time-delay model of single species growth with stage structure [J].Mathematical Bioscience. 1990. 101.. 139-153.
  • 5Yang X, Chen L, Chen J. Permanence and positive periodic solution for the single-species nonautonomous delay diffusive model[J]. Comput Math Appl, 1996, 32: 109-116.
  • 6Kuang Y. Delay Differential Equation with Application in Population Dynamics[M]. Academic Press. Inc, 1993.
  • 7Wang W. Chen L. A predator-prey system with stage-structure for predator[J]. Computers Math Applic, 1997,8: 83-91.
  • 8胡志兴,王辉,管克英.具有非线性接触率和时滞的SIRS流行病模型[J].应用数学学报,1999,22(1):10-16. 被引量:13
  • 9原存德,胡宝安.具有阶段结构的SI传染病模型[J].应用数学学报,2002,25(2):193-203. 被引量:51

共引文献58

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部