Load Forecasting for Control of the Use of Transmission System for Electric Distribution Utilities
Load Forecasting for Control of the Use of Transmission System for Electric Distribution Utilities
摘要
The Brazilian electric sector reform established that the remuneration of distribution utilities must be through the management of their systems. This fact increased the necessity of control and management of load flows through the connection points between the distribution systems and the basic grid as a function of the contracted amounts. The objective of this control is to avoid that these flows exceed some thresholds along the contracted values, avoiding monetary penalties to the utility or unnecessary amounts of contracted flows that overrates the costumers. This question highlights the necessity of forecast the flows in these connection points in sufficient time to permit the operator to take decisions to avoid flows beyond the contracted ones. In this context, this work presents the development of a neural network based load flow forecaster, being tested two time-series neural models: support vector machines and Bayesian inference applied to multilayered perceptron. The models are applied to real data from a Brazilian distribution utility.
参考文献21
-
1ANEEL, Agencia Naciona1 de Energia Eletrica, Procedimentos de Distribuicao de Energia Eletrica no Sistema Eletrico Naciona1, MOdulo 3-Acesso aos Sistemas de Distribuicao, http://www.aneel.gov.br/arquivos/PDFlModu103-TextoB asico-2005-06-03.pdf (accessed Feb. 29,2008).
-
2R Ramanathan, R Engle, CW.J. Granger, F. Vahid-Araghi, C. Brace, Short-run fore-casts of electricity loads and peaks, International Journal of Forecasting 13 (2) (1997) 161-174.
-
3GA Darbellay, M Slama, Forecasting the short-term demand for electricity: Do neural networks stand a better chance, International Journal of Forecasting 16 (1) (2000) 71-83.
-
4S.J. Huang, K.R Shih, Short-term load forecasting via arma model identification including non-gaussian process considerations, IEEE Transactions on Power Systems 18 (2) (2003) 673-679.
-
5A Khotanzad, R.R. Afkhami, D. Maratuku1am, ANNSTLF-Artificial neural network short-term load forecaster generation three, IEEE Transactions on Power Systems 13 (4)(1998) 1413-1422.
-
6H.S. Hippert, RC. Souza, C.E. Pedreira, Neural networks for load forecasting: A review and evaluation, IEEE Transactions on Power Systems 16 (1) (2001)44-55.
-
7OAS. Carpinteiro, AJ.R Reis, AP. Alves da Silva, A hierarchical neural model in short-term load forecasting, Applied Soft Computing 4 (4) (2004) 405-412.
-
8H. Mori, H. Kobayashi, Optimal fuzzy inference for short-term load forecasting, IEEE Transactions on Power Systems 11 (1)(1996) 390-396.
-
9T. Senjyu, S. Higa, K. Uezato, Future load curve shaping based on similarity using fuzzy logic approach, lEE Proceedings on Generation, Transmission and Distribution 145 (4) (1998) 375-380.
-
10PA Mastorocostas, J.B. Theocharis, AG. Bakirtzis, Fuzzy modeling for short term load forecasting using the orthogonal least squares method, IEEE Transactions on Power Systems 14 (1) (1999) 29-36.
-
1田剑峰.室外型通信电源(新品介绍)[J].电源技术应用,2007,10(8):65-66.
-
2史中.数据中心如何应对黑客对电网的攻击[J].计算机与网络,2016,42(9):46-47.
-
3索尼TA—DA5400ES高清AV机登场[J].实用影音技术,2008(10):4-4.
-
4毛善丽,李晓卉,蔡彬,丁月民.基于EHWSN的能量均衡动态最大流路由算法[J].传感技术学报,2017,30(2):291-295. 被引量:2
-
5郑木森.电气设计中10KV配电网的应用[J].中国科技博览,2013(29):378-378.
-
6高峰,茅及愚,李维嘉.基于结构不变性原理的有效提升液压伺服系统动特性的新方法[J].液压与气动,2004,28(7):59-61. 被引量:5
-
7刘春荣.求阀控缸的负载流量时一个易犯的错误[J].机床与液压,2001,29(4):83-84. 被引量:1
-
8钟奇.电卡表[J].北京电子,2003(9):25-25.
-
9张海清.绿色通信中小区缩放技术概述[J].工业设计,2015(7):128-128. 被引量:1
-
10黄河清,沈杰,马奎,姚道远,刘海涛.无线传感网基于梯度的非均匀分簇[J].光学精密工程,2009,17(8):2053-2059. 被引量:7