期刊文献+

Load Forecasting for Control of the Use of Transmission System for Electric Distribution Utilities

Load Forecasting for Control of the Use of Transmission System for Electric Distribution Utilities
下载PDF
导出
摘要 The Brazilian electric sector reform established that the remuneration of distribution utilities must be through the management of their systems. This fact increased the necessity of control and management of load flows through the connection points between the distribution systems and the basic grid as a function of the contracted amounts. The objective of this control is to avoid that these flows exceed some thresholds along the contracted values, avoiding monetary penalties to the utility or unnecessary amounts of contracted flows that overrates the costumers. This question highlights the necessity of forecast the flows in these connection points in sufficient time to permit the operator to take decisions to avoid flows beyond the contracted ones. In this context, this work presents the development of a neural network based load flow forecaster, being tested two time-series neural models: support vector machines and Bayesian inference applied to multilayered perceptron. The models are applied to real data from a Brazilian distribution utility.
出处 《Journal of Energy and Power Engineering》 2013年第1期139-147,共9页 能源与动力工程(美国大卫英文)
关键词 Load forecasting artificial neural networks complexity control input selection Bayesian methods support vector machines. 预测控制 传输系统 配电设施 公用事业 负荷 负载流量 神经网络 时间序列
  • 相关文献

参考文献21

  • 1ANEEL, Agencia Naciona1 de Energia Eletrica, Procedimentos de Distribuicao de Energia Eletrica no Sistema Eletrico Naciona1, MOdulo 3-Acesso aos Sistemas de Distribuicao, http://www.aneel.gov.br/arquivos/PDFlModu103-TextoB asico-2005-06-03.pdf (accessed Feb. 29,2008).
  • 2R Ramanathan, R Engle, CW.J. Granger, F. Vahid-Araghi, C. Brace, Short-run fore-casts of electricity loads and peaks, International Journal of Forecasting 13 (2) (1997) 161-174.
  • 3GA Darbellay, M Slama, Forecasting the short-term demand for electricity: Do neural networks stand a better chance, International Journal of Forecasting 16 (1) (2000) 71-83.
  • 4S.J. Huang, K.R Shih, Short-term load forecasting via arma model identification including non-gaussian process considerations, IEEE Transactions on Power Systems 18 (2) (2003) 673-679.
  • 5A Khotanzad, R.R. Afkhami, D. Maratuku1am, ANNSTLF-Artificial neural network short-term load forecaster generation three, IEEE Transactions on Power Systems 13 (4)(1998) 1413-1422.
  • 6H.S. Hippert, RC. Souza, C.E. Pedreira, Neural networks for load forecasting: A review and evaluation, IEEE Transactions on Power Systems 16 (1) (2001)44-55.
  • 7OAS. Carpinteiro, AJ.R Reis, AP. Alves da Silva, A hierarchical neural model in short-term load forecasting, Applied Soft Computing 4 (4) (2004) 405-412.
  • 8H. Mori, H. Kobayashi, Optimal fuzzy inference for short-term load forecasting, IEEE Transactions on Power Systems 11 (1)(1996) 390-396.
  • 9T. Senjyu, S. Higa, K. Uezato, Future load curve shaping based on similarity using fuzzy logic approach, lEE Proceedings on Generation, Transmission and Distribution 145 (4) (1998) 375-380.
  • 10PA Mastorocostas, J.B. Theocharis, AG. Bakirtzis, Fuzzy modeling for short term load forecasting using the orthogonal least squares method, IEEE Transactions on Power Systems 14 (1) (1999) 29-36.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部