期刊文献+

一种改进粒子群优化算法在入侵检测中的应用 被引量:2

Application of improved particle swarm optimization algorithm in intrusion detection
下载PDF
导出
摘要 针对现有的粒子群优化(PSO)算法大多存在早熟收敛、容易陷入局部最优值的问题,提出了一种新的协同粒子群优化(CPSO)算法。该算法拥有两个子群,一个用于全局搜索始终保持粒子多样性,另一个用于局部搜索保证搜索精度,通过相互协同合作在全局最优值附近实现精确搜索。最后把该算法应用到动态聚类入侵检测,通过优化聚类半径和聚类阈值,对训练数据进行正、异常类聚类,然后用测试数据进行攻击检测。试验结果表明该算法较粒子群和突变粒子群(MPSO)算法性能明显提高。 Aiming at the problems of premature convergence and easy to fall into local optimum value of existing particle swarm optimization(PSO) algorithms,a new collaborative particle swarm optimization(CPSO) algorithm is proposed.CPSO algorithm has two subgroups,one subgroup is used for global search always keep particle diversity,the other one is used for local search guarantee search precision.So precise search is realized nearly the global optimal value by mutual cooperation.Finally,the proposed algorithm applied to intrusion detection based on dynamic cluster.Through the optimization of clustering radius and clustering threshold,the training data is classified as normal and abnormal clustering.Then test data is used to attack detection.The results show that CPSO algorithm has a marked improvement in performance over the traditional PSO algorithm and improved mutation particle swarm(MPSO) algorithm.
出处 《燕山大学学报》 CAS 2013年第2期124-128,147,共6页 Journal of Yanshan University
基金 河北省教育厅基金资助项目(2007493)
关键词 粒子群优化 协同粒子群 动态聚类 入侵检测 PSO premature convergence collaborative particle swarm dynamic cluster intrusion detection
  • 相关文献

参考文献7

  • 1Lee W, Stolfo S J, Mok K W, et al. Adaptive intrusion detection: a data mining approach [J]. Artificial Intelligence Review, 2000,14 (6): 533-567.
  • 2Portnoy L. Intrusion detection with unlabeled data using clustering [D]. New York: Columbia University, Department of Computer Science, 2000.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [C] //IEEE International Conference on Neural Networks, 1995,1942-1948.
  • 4Yamille D V, Ganesh K V. Particle swarm optimization: basic concepts, variants and applications in power systems [J]. IEEE Transactions on Evolutionary Computation, 2008,12 (2): 171 - 195.
  • 5韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 6Asanga R, Samna K H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3): 240-255.
  • 7师彪,李郁侠,于新花,闫旺.基于改进粒子群-模糊神经网络的短期电力负荷预测[J].系统工程理论与实践,2010,30(1):157-166. 被引量:46

二级参考文献14

  • 1程其云,孙才新,张晓星,周湶,杜鹏.以神经网络与模糊逻辑互补的电力系统短期负荷预测模型及方法[J].电工技术学报,2004,19(10):53-58. 被引量:23
  • 2张国华,张展羽,邵光成,殷国玺.基于粒子群优化算法的灌溉渠道配水优化模型研究[J].水利学报,2006,37(8):1004-1008. 被引量:51
  • 3王波,王灿林,梁国强.基于粒子群寻优的D-S算法[J].传感器与微系统,2007,26(1):84-86. 被引量:14
  • 4吴杰康,陈明华,陈国通.基于PSO的模糊神经网络短期负荷预测[J].电力系统及其自动化学报,2007,19(1):63-67. 被引量:11
  • 5Senthil Arumugam M, Rao M V C, Chandramohan A. A new and improved version of particle swarm optimization algorithm with global-local best parameters[J]. Knowledge and Information Systems, 2008, 16(3): 15-26.
  • 6Shi B, Li Y X, Yu X H, et al. A modified particle swarm optimization and radial basis function neural network hybrid algorithm model and its application[C]//2009 WRI Global Congress on Intelligent Systems (GCIS 2009), 2009, 1:134-138.
  • 7Omkar S N, Mudigere D, Narayana Naik G, et al. Vector evaluated particle swarm optimization for multiobjective design optimization of composite structures[J]. Computers and Structures, 2008, 86(1-2): 45-56.
  • 8葛哲学,孙志强,神经网络理论与MATLABR2007实现[M].北京:电子工业出版社,2005:67-69.
  • 9Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998, 69-73.
  • 10Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 101-106.

共引文献166

同被引文献25

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部