期刊文献+

偏置判别SVM预测microRNA靶基因

Prediction of microRNA target genes based on biased discriminant SVM
下载PDF
导出
摘要 针对靶基因样本数据不平衡导致阳性样本预测准确率较低的问题,提出基于SVM的靶基因预测算法,即偏置判别SVM。算法选取高质量的数据集和最优特征集作为输入,在经验特征空间中以偏置判别分析准则为核优化目标函数,使用核保角变换的方法逐步优化核矩阵,用最优核矩阵构造偏置判别SVM,以解决靶基因数据不平衡对预测造成的影响。对比实验分析表明,提出的偏置判别SVM算法具有更高的特异度、敏感度和预测精度。同时,偏置判别SVM具有更强的泛化能力,鲁棒性更好。 For the data imbalance problem of miRNA target, a target prediction algorithm, Biased Discriminant Support Vector Machine, is proposed to solve the lower prediction accuracy ofpositive samples. The high-quality data sets and the optimal feature set are selected as the input data. Biased discriminate analysis criteria is selected as the kernel optimize objective function in the empirical feature space, and the conformal transformation of a kernel is adopted to gradually optimize the kernel matrix. Then, the SVM classifier with the optimal kernel matrix is constructed to solve the problem for the prediction causing by imbalance data. Through comparison with the analysis of the experimental results, the biased discriminant support vector machine method shows higher specificity, sensitivity and prediction accuracy, which proves that it has stronger generalization ability and better robustness.
出处 《燕山大学学报》 CAS 2013年第2期153-158,共6页 Journal of Yanshan University
基金 国家自然科学基金资助项目(60970123)
关键词 MIRNA 靶基因预测 偏置判别SVM 数据不平衡 核优化 miRNA target prediction biased discriminant SVM data imbalance kernel optimize
  • 相关文献

参考文献3

二级参考文献112

  • 1Badger J H, Olsen G J. CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol, 1999, 16:512--524.
  • 2Frith M C, Bailey T L, Kasukawa T, et al. Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol, 2006, 3: 40---48.
  • 3LiuJ, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet, 2006, 2:29.
  • 4Kong L, Zhang Y, Ye Z, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35:345--349.
  • 5Wang X, Zhang J, Li F, et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics, 2005, 21:3610--3614.
  • 6Jiang P, Wu H, Wang W, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res, 2007, 35:339--344.
  • 7Huang T, Fan B, Rothschild M F, et al. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics, 2007, 8:341.
  • 8Lowe T M, Eddy S R. A computational screen for methylation guide snoRNAs in yeast. Science, 1999, 283:1168--1171.
  • 9Schattner P, Barberan-Soler S, Lowe T M. A computational screen for mammalian pseudouridylation guide H/ACA RNAs. RNA, 2006, 12: 15--25.
  • 10Yang J, Zhang X, Huang Z, et al. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucl Acids Res, 2006, 34:5112--5123.

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部