期刊文献+

基于子词PSPL的汉语语音文档索引

Subword-Based Position Specific Posterior Lattices for Chinese Spoken Document Indexing
下载PDF
导出
摘要 针对汉语语音文档检索中最优识别单元和检索单元不一致的问题,提出一种基于子词(position specificposterior lattices,PSPL)的语音文档索引方法;该方法以词为识别单元对语音文档进行解码,得到PSPL:然后对PSPL进行子词切分,并根据子词弧与原始词弧的后验概率关系,将PSPL转换为相应的子词PSPL,以子词PSPL为索引进行查询项检索.实验结果表明,所提出的方法在利用丰富语言信息的同时,解决了词解码器存在的边界分割不正确的问题,检索性能明显优于目前普遍使用的识别单元和检索单元均为词的PSPL索引方法. A spoken document indexing method based on subword-based position specific posterior lattices (S- PSPL) is proposed to overcome inconsistency between optimal recognition unit and retrieval unit in the existing Chinese spoken document indexing methods. In the proposed method, a word-based PSPL is generated with a word-based speech recognizer. Each word in the PSPL is replaced by its constituent subword units. According to the posterior probability relationship between each word and its constituent subword units, the original PSPL can be converted to the corresponding S-PSPL to be used in generating a subword-based index for retrieval. Experimental results show that the new method can make use of a well-trained language model, and avoid incorrect segmentation in the word-based recognizer as well. Better performance is obtained compared to the current indexing methods that use words as both recognition and retrieval units.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第3期259-265,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.61175017)资助
关键词 语音文档检索 语音文档索引 子词PSPL 词格 子词后验概率 spoken document retrieval, spoken document indexing, subword-based position specific posterior lattices, lattice, subword posterior probability
  • 相关文献

参考文献14

  • 1ZHENG Tieran, HAN Jiqing. Chinese spoken docu- ment retrieval based on syllable neighbor posterior probability matrix [C]//IEEE International Confer- ence on Audio, Language and Image Processing, 2008: 1209-1213.
  • 2Garofolo J, Auzanne G. The TREC spoken docu- ment retrieval track: a success story [J]. Bulletin of the American Society for Information Science and Technology, 2000, 26(5): 18-37.
  • 3倪崇嘉,刘文举,徐波.汉语大词汇量连续语音识别系统研究进展[J].中文信息学报,2009,23(1):112-123. 被引量:39
  • 4郑铁然,韩纪庆.基于音节Lattice的汉语语音检索技术及其索引去冗余方法[J].声学学报,2008,33(6):526-533. 被引量:7
  • 5郑铁然,韩纪庆,李海洋.基于词片的语言模型及在汉语语音检索中的应用[J].通信学报,2009,30(3):84-88. 被引量:5
  • 6LEE H Y, Tu T W, CHEN C P. Improved spoken term detection using support vector machines based on lattice context consistency [C]//IEEE International Conference on Acoustics, Speech and Signal Process- ing, 2011: 5648-5651.
  • 7CHELBA C, ACERO A. Position specific posterior lattices for indexing speech [C]//The 43rd Annual Meeting on Association for Computational Linguis- tics, 2005: 443-450.
  • 8CHELBA C, HAZEN T J, SARACLAR M. Retrieval and browsing of spoken content [J]. IEEE Signal Process- ing Magazine, 2008, 25(3): 39-49.
  • 9MENG C H, LEE H Y, LEE L S. Improved lattice- based spoken document retrieval by directly learn- ing from the evaluation measures [C]//IEEE Inter- national Conference on Acoustics, Speech and Signal Processing, 2009: 4893-4896.
  • 10LIN S H, CHEN B. Improved speech summariza- tion with multiple-hypothesis representations andKullback-Leibler divergence measures [C]//The 10th Annual Conference of the International Speech Com- munication Association, 2009: 1847-1850.

二级参考文献127

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部