摘要
利用初等方法把丢番图方程px4-qy2=z4化为方程x2+my2=z2,给出了方程px4-qy2=z4当p=2Q2+1,Q>0,q=2,p为奇素数时的全部正整数解。利用这一方法可以解决一类方程px4-qy2=z4的求解问题,从而拓展了关于px4-qy2=z4的结果。
Px4-qy2=z4 is changed into x2+my2=z2 by using elementary methods. When p=2Q2+l, Q 〉 0, q=2, p is odd prime integer, then all positive integer solutions of diophantine equation px4-qy2=z4are given. The foregoing method may be used to solve a class of equations such as px4,qy2=z4 and the result of equationpx4-qy2=4 are developed hereof.
出处
《辽宁工业大学学报(自然科学版)》
2013年第2期136-140,共5页
Journal of Liaoning University of Technology(Natural Science Edition)
关键词
丢番图方程
正整数解
两两互素
diophantine equation
positive integer solution
prime to each other