期刊文献+

一种基于参考点的快速k-均值算法 被引量:3

A Fast K-mean Algorithm Based on Reference and Density
下载PDF
导出
摘要 聚类分析是模式识别的一个重要分支,以核心点和k-均值算法为基础,提出了一种基于参考点的快速k-均值算法;本算法以参考点作为第一个初始聚类中心,剩余初始聚类中心在核心点中选取,使得初始聚类中心能更好的反映模式样本集的几何特征,并且能减少迭代次数。 Clustering analysis is an important branch of pattern recognition, in this paper, based on the corepoint and k-mean algorithm, a fast k-mean algorithm based on reference and density is proposed, this algorithm regards reference point as the first initial clustering center, the remaining initial clustering center is selected from the core points so that the initial clustering center can better respond geometric features of pattern sample set and can reduce the number of iterations.
作者 李有明
出处 《重庆工商大学学报(自然科学版)》 2013年第6期39-43,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 参考点 密度 K-均值 reference-point density k- mean
  • 相关文献

参考文献5

二级参考文献34

  • 1刘青宝,邓苏,张维明.基于相对密度的聚类算法[J].科学技术与工程,2006,6(15):2272-2276. 被引量:1
  • 2http://www.ics.uci.edu/~ndeam/MLSununary.html.
  • 3TDT3 Multilanguage Text Corpus,Version 2.0;LDC Catalog Number LDC2001T58,isbn:158563-193-0.
  • 4MacQueen J.Some methods for classification and analysis of multivariate observations[C]//LeCam L M,Neymon J,eds.Prec of Fifth Berkeley Symposium on Math.Star and Prob:University of California Press,1967:281-297.
  • 5Tan P N,Steinbach M,等著.范明,范宏建,等译.数据挖掘导论(Introduction to Data Mining)[M].北京:人民邮电出版社,2006.
  • 6Ester M,Kriegel H P,Sander J.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Uzama M Fayyad,Padhraic Smyth,Gregory Piatetsky-Shapiro,eds.Proc of 2nd International Conference on Knowledge Discovery and Data Mining (KDD' 96).Portland:ACM Press,1996:226-231.
  • 7Ankerst M,Breunig M M,et al.OPTICS:ordering points to identify the clustering structure[C]//Alex Delis,Christos Falontsos,Shahram Ghandeharizadeh,eds.Prec ACM S1GMOD'99 lnt Conf on Management of Data.Philadelphia Pennsylvania:ACM Press,1999:49-60.
  • 8Agrawal R,C,ehrke J,GunopulosD,et al.Automatic subspace clustering of high dimensionaldata fordataminingapplications[C]//LanraHaas,Ashutosh Tiwary,eds.Prec of t998 ACM-SIGMOD Infl Conf on Management of Data.Seattle,Washington:ACM Press,1998:94-105.
  • 9Katzavounidis I,Kuo C,Zhang Z.A new initialization technique for generalized lloyd iteration[J].IEEE Signal Processing Letters,1994,1(10):144-146.
  • 10Tou J T,Ganzalez R C.Pattern recognition principles[M].Dyersburg,TIN,USA:Addison-Wesley,1975.

共引文献138

同被引文献20

  • 1陈史政.关于常用聚类算法的实现与分析[J].福建广播电视大学学报,2006(6):74-77. 被引量:4
  • 2PAN J W,MICHELINE K. Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2001.412-413.
  • 3KAUFAN L,ROUSSEEUW P. Finding Groups in Data:an Introduction to Cluster Analysis[M].{H}New York:John Wiley and Sons,Inc,1990.
  • 4MUATA K,BRYSO O. Towards Supporting Expert Evaluation of Clustering Results Using a Data Mining Process Model[J].{H}Information Sciences,2010,(03):414-431.
  • 5ESTER M,KRIEGEL H,SANDER J,XU X. A Density Based Algorithm for Discovering Cluster in Large Spatial Databases with Noise[A].Portland:AAAI Press,1996.226-231.
  • 6AGRAWAL R,GEHRKE J,GUNOPOLOS D. Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[A].Seattle:ACM Press,1998.94-105.
  • 7朱明.数据挖掘[M]{H}合肥:中国科学技术大学出版社,2002.
  • 8EISEN M,SPELLMAN P,BROWN P. Cluster Analysis and Display of Genome-wide Expression Data[J].Proceedings of National Academy of Science USA,1988,(95):14863-14868.
  • 9AMADOR J. Sequential Clustering by Statistical Methodology[J].{H}Pattern Recognition Letters,2005,(26):2152-2163.
  • 10韩凌波,王强,蒋正锋,郝志强.一种改进的k-means初始聚类中心选取算法[J].计算机工程与应用,2010,46(17):150-152. 被引量:94

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部