期刊文献+

卫星认知无线电检测门限与功率分配联合优化算法 被引量:7

Joint Optimization Algorithm of Detection Threshold and Power Allocation for Satellite Underlay Cognitive Radio
下载PDF
导出
摘要 针对窄带卫星通信中频谱利用率不足的情况,以最大化带内数据传输量为目标,提出了基于卫星Underlay认知无线电的上行链路中信道检测门限与功率分配联合优化(JDPO)算法。首先根据检测误差、功率向量与数据传输量之间的运算关系构建了卫星Underlay认知无线电接入模型,之后将目标函数分解为检测门限与功率分配2个子问题分别进行优化,以加窗粒子群优化算法逼近了最优检测门限,根据库恩-塔克条件求解了最优功率分配向量。通过引入中间量使2个子算法反复迭代,最终得到了检测门限与功率分配的联合最优解。仿真结果表明:存在多个次要用户时,JDPO算法可以获得更多的带内数据传输量;与传统方法相比,JDPO算法的数据传输量最大可提高50%。 A joint detection threshold and power allocation optimization (JDPO) based on underlay cognitive radio is proposed to improve spectrum utilization in narrowband satellite systems. The joint scheme maximizes throughput and focuses on uplink. A corresponding model is established using the operation relationship among detection error, power allocation and throughput. Then, the optimization problem is partioned into two sub-problems: optimization of detection threshold and optimization of power allocation. A windowed particle swarm optimization is proposed to solve the former sub-problem, and the Kuhn-Tucker condition is applied to find the solution of the latter one. An intermediate variable is introduced to repeatedly perform iteration between both the sub-solutions to get the joint-optimal solutions for the detection threshold and power allocation. Simulation results and comparisons with the traditional satellite communication show that the JDPO scheme gets about 50% throughput increasing.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第6期31-36,43,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61101127)
关键词 卫星认知无线电 上行链路 频谱利用率 检测门限 功率分配 联合优化 satellite cognitive radio uplink spectrum utilization detection threshold powerallocation joint optimization
  • 相关文献

参考文献14

  • 1Federal Communication Commission.Spectrum policytask force report,02-155[R].Washington DC,USA:FCC,2002:1-10.
  • 2FUJII H,ASAI T,OKUMURA Y,et al.Capacityachievable by spectrum sharing with adaptive transmitpower control:based on field measurements[C]∥Proceedings of the 4th International Conference onCognitive Radio Oriented Wireless Networks and Com-munications.Piscataway,NJ,USA:IEEE,2009:1-6.
  • 3MITOLA J III,MAGUIRE G Q.Cognitive radio:mak-ing software radios more personal[J].IEEE PersonalCommunications,1999,6(4):13-18.
  • 4HAYKIN S.Cognitive radio:brain-empowered wir-eless communication[J].IEEE Journal on SelectedAreas in Communications,2005,23(2):201-220.
  • 5马陆,陈晓挺,刘会杰,梁旭文.认知无线电技术在低轨通信卫星系统中的应用分析[J].电信技术,2010(4):49-51. 被引量:8
  • 6GOLDSMITH A,JAFAR S A,MARIC I,et al.Breaking spectrum gridlock with cognitive radios:aninformation theoretic perspective[J].Proceedings ofthe IEEE,2009,97(5):894-914.
  • 7KANDEEPAN S,NARDIS L D,BENEDETTO M GD,et al.Cognitive satellite terrestrial radios[C]∥Proceedings of 2010IEEE Global TelecommunicationsConference.Piscataway,NJ,USA:IEEE,2010:1-6.
  • 8DEL RE E,GORNI G,RONGA L S,et al.A powerallocation strategy using game theory in cognitive radionetworks[C]∥Proceedings of IEEE 2009Internation-al conference on Game Theory for Networks.Piscat-away,NJ,USA:IEEE,2009:117-123.
  • 9MOROSI S,JAYOUSI S,DEL R E.Cooperative de-lay diversity in hybrid satellite/terrestrial DVB-SHsystem[C]∥Proceedings of IEEE 2010InternationalConference on Communications.Piscataway,NJ,USA:IEEE,2010:1-5.
  • 10European Telecommunications Standard Institute.EN302 583 Rev.1.2.1 Digital video broadcasting(DVB):framing structure,channel coding and modu-lation for satellite services to handheld devices(SH)below 3GHz[S].Sophia Antipolis,France:ETSI,2011:1-80.

共引文献7

同被引文献60

  • 1CHIANG R I,ROWE G B,SOWERBY K W.Aquantitative analysis of spectral occupancy measurements for cognitive radio[C]∥Proceedings of the IEEE 65th Vehicular Technology Conference.Piscataway,NJ,USA:IEEE,2007:3016-3020.
  • 2TRAGOS E Z,ZEADALLY S,FRAGKIADAKIS AG,et al.Spectrum assignment in cognitive radio networks:a comprehensive survey[J].IEEE Communications Surveys&Tutorials,2013,15(3):1108-1135.
  • 3ZHAO Z,PENG Z,ZHENG S,et al.Cognitive radio spectrum allocation using evolutionary algorithms[J].IEEE Transactions on Wireless Communications,2009,8(9):4421-4425.
  • 4PENG C,ZHENG H,ZHAO B Y.Utilization and fairness in spectrum assignment for opportunistic spectrum access[J].Mobile Networks and Applications,2006,11(4):555-576.
  • 5FRAGKIADAKIS A G,TRAGOS E Z,ASKOXY-LAKIS I G.A survey on security threats and detection techniques in cognitive radio networks[J].IEEECommunications Surveys&Tutorials,2013,15(3):428-445.
  • 6GHASEMI A,MASNADI-SHIRAZI M A,BIG-UESH M,et al.Spectrum allocation based on artificial bee colony in cognitive radio networks[C]∥Proceedings of 2012Sixth International Symposium on Telecommunications.Piscataway,NJ,USA:IEEE,2012:182-187.
  • 7NAEEM M,ANPALAGAN A,JASEEEMUDDINM,et al.Resource allocation techniques in cooperative cognitive radio networks[J].IEEE Communications Surveys&Tutorials,2014,16(3):729-744.
  • 8KARABOGA D,BASTURK B.On the performance of artificial bee colony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.
  • 9MARINAKIS Y,MARINAKI M,MATSATSINISN.A hybrid discrete artificial bee colony-GRASP algorithm for clustering[C]∥Proceedings of International Conference on Computers&Industrial Engineering.Piscataway,NJ,USA:IEEE,2009:548-553.
  • 10GAO W,LIU S,HUANG L.A global best artificial bee colony algorithm for global optimization[J].Journal of Computational and Applied Mathematics,2012,236(11):2741-2753.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部