摘要
随着多源信息融合技术的迅速发展,图像融合成为一个热点话题。虽然图像融合方法多种多样,融合技术千差万别,但是丰富融合图像的信息量和改善图像质量始终是图像融合的根本目的,也是衡量各种融合方法效果的基本准则。传统的IHS融合算法强制性地对两幅源图像的I分量进行替换,造成了融合图像的光谱失真以及空间分辨率降低等问题,为解决这一问题,文中引进了加权平均算子,提出一种基于改进的IHS像素级图像融合算法,并结合实例,对红外图像和CCD图像进行融合。理论分析与实验结果显示:提出的融合方法得到的融合图像不仅红外热目标突出、背景部分清晰、视觉效果好,而且计算简洁、实时性好,更利于伪装目标的识别。
With the rapid development of multi-source information fusion technology, image fusion has become a hot topic. Although there exist all kinds of image fusion methods, fusion technology varies widely, riching the amount of information and improving the quality of fused image is always the basic purpose of image fusion, it is also a basic norms to judge various fusion methods. Traditional IHS fusion algorithm mandatory to replace the I-component of two source images, it made the spectral distortion and spatial resolution of the fusion image low. To solve this problem, this papper introduces a weighted average operator and proposes the image fusion method in pixel level about infrared image and CCD image based on improved IHS. The theoretical analysis and experimental results show that: using this fusion algorithm to get the fusion image is not only target prominent, natural color, better visual effects, but also simple calculation, good real-time. It used to disguise the hidden target.
出处
《信息技术》
2013年第5期5-9,共5页
Information Technology
基金
航天科技创新基金(CASC201102)