摘要
概率图模型是概率论和图论的结合,他们提供了一个天然工具,来解决应用数学和工程学上的不确定性和复杂性问题。文中对三种典型的概率图模型及其推理算法进行讨论,从理论和技术两个方面总结近几年概率图模型在人工智能、生命科学、计算机视觉、社会网络分析等领域的主要研究成果,同时指出仍面临的主要难题:如何建立合理的概率图模型,如何基于已有概率图模型进行高效地推理。
Graphical models are a marriage between probability theory and graph theory. They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering- uncertainty and complexity. This paper discusses on three kinds of probabilistic graphical model, summarizes the main research results in the field of artificial intelligence, life science, computer vision and social network analysis in the recent years. It pointed out the main challenge, how to establish an appropriate probabilistic graphical model, how to efficiently reason on a probabilistic graphical model.
出处
《信息技术》
2013年第5期91-93,共3页
Information Technology
关键词
概率图模型
贝叶斯
马尔可夫
因子图
推理
应用
probability graphic model
Bayesian
Markov
Factor graph
inference
application