期刊文献+

概率图模型及其推理技术的研究现状 被引量:1

Survey on probability graph model and its reasoning technology
下载PDF
导出
摘要 概率图模型是概率论和图论的结合,他们提供了一个天然工具,来解决应用数学和工程学上的不确定性和复杂性问题。文中对三种典型的概率图模型及其推理算法进行讨论,从理论和技术两个方面总结近几年概率图模型在人工智能、生命科学、计算机视觉、社会网络分析等领域的主要研究成果,同时指出仍面临的主要难题:如何建立合理的概率图模型,如何基于已有概率图模型进行高效地推理。 Graphical models are a marriage between probability theory and graph theory. They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering- uncertainty and complexity. This paper discusses on three kinds of probabilistic graphical model, summarizes the main research results in the field of artificial intelligence, life science, computer vision and social network analysis in the recent years. It pointed out the main challenge, how to establish an appropriate probabilistic graphical model, how to efficiently reason on a probabilistic graphical model.
作者 张岩
出处 《信息技术》 2013年第5期91-93,共3页 Information Technology
关键词 概率图模型 贝叶斯 马尔可夫 因子图 推理 应用 probability graphic model Bayesian Markov Factor graph inference application
  • 相关文献

参考文献11

  • 1Daphne Koller, Nir Friedman. Probabilistie Graphical Models: Principles and Techniques [ M ]. The MIT Press, 2009:1 -153.
  • 2Christopher M Bishop. Pattern Recognition and Machine Learning [M]. Berlin: Springer, 2006:383-422.
  • 3Kschischang F, Frey B, l_oeliger H-A. Factor graphs and the sum- product algofithm[J]. IEEE Transactions on Information Theory, 2001,47(2) :498 -519.
  • 4Brendan J Frey, Frank R Kschischang, Hans-Andrea Loeliger, et al. Factor graphs and algorithms[ C]//Proceedings of the 35th Allerton Conference on Communications, Control, and Computing, Allerton House, Monticello, IL, Sept. 29-Oct. 1, 1997:666-680.
  • 5Rui Li, Kewei Chen, Adam S Fleisher, et al. Large-scale direction- al connections among multi resting-state neural networks in human brain: A functional MR] and Bayesian network modeling study[ J]. Neurolmage, 2011,56(3) : 1035 - 1042.
  • 6Correa Elon, Royston Goodacrc. A genetic algorithm-Bayesian net- work approach for the analysis of mctabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species [ J]. BMC Bioinformatics, 2011, 12(33, 33 -50.
  • 7Dijia Wu, Kim L Boyer. Markov random field based phase demodu- lation of intefferometric images [ J ]. Computer Vision and Image Understanding, 2011, 115(6) : 759 -770.
  • 8Elena Zheleva, Lise Getocr, Sunita Sarawagi. Higher-order Graph- ical Models for Classification in Social and Affiliation Networks [ C]//Proceodings of NIPS Workshop on Networks Across Disci- plines : Theory and Applications, 2010.
  • 9孟华东,邓晨,苏扬,王鹏.基于Bayes网络的微波视频融合车辆分类[J].清华大学学报(自然科学版),2011,51(1):135-140. 被引量:5
  • 10沈剑,路林吉.MRF随机场在文本图像清晰化算法中的应用[J].计算机技术与发展,2011,21(6):9-11. 被引量:1

二级参考文献25

  • 1何华君,卢朝阳,焦卫东,郭大波.基于梯度和MRF模型的视差估计算法[J].西安电子科技大学学报,2007,34(3):373-376. 被引量:2
  • 2Cheung S Y, Coleri S, Dundar B, et al. Traffic measurement and vehicle classification with single magnetic sensor [J]. Journal of the Transportation Research Board, 2005, 1917(19) : 173 - 181.
  • 3Abdelbaki H M, Hussain K, Gelenbe E. A laser intensity image based automatic vehicle classification system [C]// 2001 IEEE Intelligent Transportation Systems Conference Proceedings. Oakland, CA: IEEE Press, 2001:460-466.
  • 4Gupte S, Masoud O, Martin R F K, et al. Detection and classification of vehicles [J]. IEEE Transaction on Intelligent Transportation Systems, 2002, 3(1) : 37 - 47.
  • 5XUAN Yiguang, MENG Huadong, WANG Xiqin, et al. A high-range-resolution microwave radar system for traffic flow rate measurement [C]// Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems. Vienna, Austria, IEEE Press,2005:880-885.
  • 6FANG Jianxin, MENG Huadong, ZHANG Hao, et al. A low-cost vehicle detection and classification system based on unmodulated continuous-wave radar [C]// Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference. Seattle, WA: IEEE Press, 2007: 715-720.
  • 7Urazghildiiev I, Ragnarsson R, Ridderstrom P, et al. Vehicle classification based on the radar measurement of height profiles [J]. IEEE Transaction on Intelligent Transportation System, 2007, 8(2) : 245 - 253.
  • 8Zhen J, Balasuriya A, Challa S. Target tracking with Bayesian fusion based template matching [C]// 2005 IEEE International Conference on Image Processing. IEEE Press, 2005, 826-829.
  • 9Kawasaki N, Kiencke U. Standard platform for sensor fusion on advanced driver assistance system using Bayesian network [C]// 2004 IEEE Intelligent Vehicles Symposium. Rarma, Italy: IEEE Press, 2004: 250-255.
  • 10Nanzer J A, Rogers R L. Bayesian classification of humans and vehicles using micro-Doppler signals from a scanning-beam radar [J]. Microwave and Wireless Components Letters, 2009, 19(5): 338-340.

共引文献4

同被引文献11

  • 1王飞,邹仕洪,陈山枝,王文东.基于模糊数学的Web服务QoS建模[J].计算机应用研究,2007,24(4):214-216. 被引量:9
  • 2XIA Y L. Research on Key Techniques of Self-Recov- ery for Service Composition[D]. Hefei: University of Science and Technology of China,2010(Ch).
  • 3KIM S M, ROSU M C. A survey of public web services [-DB/OL]. [2015-02-20]. http://link, springer, com/ chapter/lO. 1007/978-3-540-30077-9_10 S page-1.
  • 4JIANG W, HU S, LEE D,etal. Continuous query for QoS-aware automatic service composition [DB/OL]. [2015-01-20]. http://ieeezplore, ieee. org/xpls/abs_all. jsp? arnumber=6257789&tag= l.
  • 5ARDISSONOL, CONSOLE L, GOY A,etal. Enhan- cing web services with diagnostic capabilities [DB/ OL]. [2015-02-10]. http://ieeexplore, ieee. org/ xpls/abs all. jsp? arnumber= 1595728.
  • 6GROSCLAUDE I. Model-based monitoring of compo- nent-based software systems[DB/OL]. [2015-02-15]. http://citeseer3c, ist. psu. edu/viewdoc/download? doi= 10, 1.1.1, 7593&rep=rep l &type= pd f,.
  • 7LIANG Q A, SU S Y W. AND/OR graph and search algorithm for discovering composite web services[J]. International Journal of Web Services Research (IJWSR), 2005, 2(4) : 48-67.
  • 8GU Z F, Li J X, XU B. Automatic service composi- tion based on enhanced service dependency graph[DB/ OL]. [2015-01-10]. http://ieee:cplore, ieee. org/ xpls/abs all. jsp? arnumber=4670182.
  • 9ZHU M M. Research on Structural Learning and In- ference in Bayesian Networks[D]. Xi'an.. Xidian U- niversity, 2013 (Ch).
  • 10范小芹,蒋昌俊,王俊丽,庞善臣.随机QoS感知的可靠Web服务组合[J].软件学报,2009,20(3):546-556. 被引量:69

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部