期刊文献+

基于遗传神经网络的立体图像的客观评价 被引量:4

Objective quality evaluation method of stereo image based on genetic algorithm and neural network
下载PDF
导出
摘要 立体图像质量评价已成为立体成像技术领域的关键问题之一,采用基于统计学习的支持向量机模型模拟人类的认知特性对立体图像进行质量评价。但是由于立体图像较单视点平图像数据量成倍增长,为了降低计算复杂度,提取更加符合人类认知特性的图像特征,采用主成分分析提取立体图像样本的特征值和特征向量,利用遗传算法对支持向量机的参数进行最优化选择。实验结果表明:该方法较单纯采用支持向量机方法对立体图像质量进行评价泛化性能更好,其正确分类率达到94%,更符合人眼的主观感受。 The stereo image quality evaluation has become one of the key issues of the three-dimensional imaging technology. This paper is based on statistical learning support vector machine model human cognitive characteristics of the three-dimensional information to evaluate the quality of the stereo image. However, due to the amount of information three-dimensional image is twice the amount of single viewpoint fiat image, in order to reduce the computational complexity, using principal component analysis to extract the eigenvalues and eigenvectors of the three-dimensional image samples, and to use genetic algorithms to select the optimal parameters of support vector machine. The experimental results show that the proposed method has better stereo image quality evaluation generalization performance than by simply using support vector machine method, and has a correct classification rate of 94 percent, more in line with the subjective feelings of the human eye.
出处 《信息技术》 2013年第5期148-153,共6页 Information Technology
关键词 支持向量机 主成分分析 遗传算法 立体图像处理 SVM PCA GA stereoscopic image processing
  • 相关文献

参考文献6

二级参考文献46

  • 1崔蔚,曾宪雯,赵国伟.线性方程组正交化行处理法并行算法[J].四川师范大学学报(自然科学版),2004,27(5):492-496. 被引量:8
  • 2唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 3唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 4赵剑威,郑逢斌,汤赛丽,葛强.数据库自然语言查询条件研究[J].郑州大学学报(理学版),2005,37(3):54-57. 被引量:2
  • 5孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 6Hsu C W, Lin C J. A comparison of methods for muhi-class support vector machines [ J ]. IEEE Transaction on Neural Networks, 2002,13(2) :415-425.
  • 7Bottou L, Cortes C, Dcnkcr J, et al. Comparison of classifier methods:A case study in handwriting digit recognition[ C ]//International Conference on Pattern Recognition. Los Alamos, California:IEEE Computer Society Press, 1994:77-83.
  • 8Jaehe Y, Azer B I. Adaptive reliable muhicast[ J]. IEEE,2000,3(6) :1542-1546.
  • 9Azimi-Sadjadi M R, Zekavat S A. Cloud classification using support vector machines [ C ]//Leopold E, Kirsten M. Proc of the 2000 IEEE Geoscience and Remore Sensing Symposium ( IGRASS 2000). Hawaii : Honolulu,2000,2 : 669-671.
  • 10Sungmoon C, Sang H O, Soo Y L. Support vector machines with binary tree architecture for muhi-class classification[ J]. Neural Information Processing-Letters and Reviews ,2004,2 (3) :47-51.

共引文献50

同被引文献42

  • 1Wang Z,Bovik A C,Sheikh H R,et al. Image quality as- sessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4) : 600-612.
  • 2Wang Z,Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters,2002,9(3) :81-84.
  • 3Carnec M,Le Callet P,and Barba D. An image quality as- sessment method based on perception of structural infor- mation[A]. Proc. of IEEE Int. Conf. on Image Processing[C].2003,185-188.
  • 4Wang Z,Simoncelli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statis- tic model[A. Proceedings of the SPIE Human Vision and Electronic Imaging X[C]. 2005,149-159.
  • 5Ding Y, Wang S, Zhang D Full-reference image quality assessment using statistical local correlation [J] Elec- tronics Letters, 2014,50(2) : 79-81.
  • 6Bagade J V,Singh K,Dandawate Y H. No reference im- age quality assessment using blocked-based and frequen- cy domain statistical features a machine learning ap- proach[J]. International Journal of Communication Net- works and Distributed Systems, 2014,12 ( 1 ) : 95-112.
  • 7Mu W,Gao J,Jiang H,et al. A radiographic image quality assessment algorithm based on network topology analysis [J]. Insight-Non-Destructive Testing and Condition Moni- toring,2014,56(1) ;10-14.
  • 8Bensalma R,Larabi M C. A perceptual metric for stereo- scopic image quality assessment based on the binocular energy[J]. Multidimensional Systems and Signal Pro- cessing, 2013,24(2) :281-316.
  • 9Cheng J, L i S. Objective quality assessment of stereo im- ages based on ICA and BT-SVM[A]. Procl of Computer Science & Education (lOOSE), 2012 7th International Conference on. IEEE[C]. 2012,154-159.
  • 10Lee C P,Lin C J. A study on L2-1oss (squared hinge-loss) multiclass SVM [J]. Neural computation, 2013,25 ( 5 ) :1302-1323.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部