期刊文献+

基于粒子群优化的模糊K-Means目标分类算法 被引量:7

Algorism for Goal Classification Based on Particle Swarm Optimization and Fuzzy K-Means
下载PDF
导出
摘要 针对模糊K-Means算法随机选择初始数据中心而导致的聚类效果不稳定的问题,提出了一种粒子群优化的模糊K-Means改进聚类算法。首先,定义了一个确定聚类数K和初始数据中心的算法,然后将算法得到的初始数据中心作为初始粒子,采用粒子群优化算法进行寻优获得最优数据中心,最后再使用模糊K-Means算法根据最优数据中心进行聚类。在UCI数据集上的实验结果表明文中算法能准确地实现分类,具有较强的全局寻优能力、较少的寻优时间和较快的收敛能力,能有效地解决目标分类问题。 In order to overcome the defect of the unsteady clustering effect caused by the random choosing initial data center of fuzzy K --Means algorism, a clustering algorism is proposed based on particle swarm optimization and fuzzy K--Means algorism. Firstly, a algorism defined for obtaining clustering count K and initial data center is proposed, then the initial data center is used as the initial particle, and the particle swarm algorism is used to get the optimum data center, finally the fuzzy K--Means algorism is clustering according to the optimum data center. The experiment on UCI data set shows the method in this paper can accurately realize classification with the strong global optimization ability, the less time and rapid convergence ability, it can effectively solve the goal classification problem.
出处 《计算机测量与控制》 北大核心 2013年第5期1266-1268,共3页 Computer Measurement &Control
关键词 粒子群 模糊 分类 K均值 聚类 particle swarm fuzzy classification K--Means clustering
  • 相关文献

参考文献11

  • 1王旸,刘晓东,徐小慧,胡军.基于粒子群优化的数据分类算法[J].系统仿真学报,2008,20(22):6158-6162. 被引量:8
  • 2De Jong K A, Spears W, Cordon D F. Using Genetic Algorithms for Concept Learning [J].Machine Learning (S0885- 6125), 1993, 13 (2/3), 155-188.
  • 3Wilson S. Classifier Systelns and the Animate Problem [J]. Ma- chine Learning (S0885--6125), 1987, 2 (3) : 199 - 228.
  • 4陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(S1):287-291. 被引量:31
  • 5MacQueen J B. Some methods for classification and analysis of mul- tivariate observations [A] //Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability [C]. 1967: 281 -297.
  • 6Wang W, Yang J, Muntz R. STING: a statistical information grid approach to spatial data mining [A] //Proc of the 23rd Inter- national Conference on Very Large Data Bases [C]. 1997:1 -18.
  • 7李世威,王建强.一种混合粒子群优化模型的Web聚类方法[J].计算机应用研究,2010,27(9):3259-3262. 被引量:1
  • 8Khan S S; Ahmad A. Cluster center initialization algorithm for k-- means clustering [J]. Pattern Recognition Letters, 2004, 25 (11): 1293-1302.
  • 9姚金杰,韩焱.基于改进自适应粒子群算法的目标定位方法[J].计算机科学,2010,37(10):190-192. 被引量:9
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[A]. Pro- ceedings of IEEE International Conference on Neural Networks [C]. Washington, DC: IEEE, 1995.. 1942-1948.

二级参考文献40

  • 1刘静,钟伟才,刘芳,焦李成.基于组织协同进化分类算法的遥感图像目标识别[J].信号处理,2004,20(3):277-280. 被引量:2
  • 2倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 3De Jong K A, Spears W, Cordon D F. Using Genetic Algorithms for Concept Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 155-188.
  • 4Janikow C Z. A knowledge-intensive Genetic Algorithm for Supervised Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 189-288.
  • 5Holland J H. Escaping Brittleness: The Possibilities of Genetic Purpose Learning Algorithms Applied to Parallel Rule-based Systems [J]. Machine Learning (S0885-6125), 1986, 10(4): 593-623.
  • 6Wilson S. Classifier Systems and the Animate Problem [J]. Machine Learning (S0885-6125), 1987, 2(3): 199-228.
  • 7Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, Perth, NJ, USA: 1EEE service center, 1995: 1942-1948.
  • 8Shi Y, Eberhart R C. A Aodified Particle Swarm Optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, N J, Anchorage, AK, USA: IEEE service center, 1998: 69-73.
  • 9Swinburne R. Bayes's Theorem [M]. Oxford, UK: Oxford University Press, 2002.
  • 10UCI repository of machine learning databases [DB/OL]. http://www.ic s.uci.edu/-mlearn/MLRepository.html.

共引文献44

同被引文献45

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部