期刊文献+

基于压缩感知的QAR数据重构 被引量:6

QAR Data Sampling and Reconstruction Based on Compressive Sensing
下载PDF
导出
摘要 介绍了一种基于压缩感知(CS)理论的数据重构方法,适用于记录民航飞机运行参数的快速存取记录器(QAR);选择合适的稀疏变换基将转轴震动信号、垂直加速度信号等飞行数据稀疏表示后,通过测量矩阵实现信号有用信息的高效获取,并利用正交匹配追踪算法对QAR记录的压缩后数据进行重构;仿真结果表明,通过该方法完成飞行数据的压缩采样、传输和重构,重构信号与原始信号的相对误差小于3%,重构效果较好,不仅能够降低QAR的存储压力,提高数据的传输效率,而且使QAR数据应用于对采样率要求较高的研究项目成为可能。 A method of data reconstruction based on Compressive Sensing (CS) theory is introduced, suitable for civil aircraft airborne Quick Access Recorder (QAR). Choose appropriate sparse transform base to represent vibration signal of shaft, vertical acceleration signal and other flight data sparsely, obtain useful information of signals by measurement matrix, and use orthogonal matching pursuit algorithm to reconstruct compressed data recorded by QAR. The simulation results show that perform compressed sampling, transmission and reconstruc- tion of flight data through this method has achieved good reconstruction results. The relative error of the reconstructed signal and the original signal is less than 3%. This method can not only reduce the storage pressure of QAR, improve the data transmission efficiency, but also make it possible that QAR data be used for research projects which request high sampling rate.
出处 《计算机测量与控制》 北大核心 2013年第5期1351-1353,共3页 Computer Measurement &Control
基金 国家重点基础研究发展规划项目(2010CB955401) 中央高校基金科研业务费项目(ZXH2012B001)
关键词 快速存取记录器 压缩感知 稀疏表示 测量矩阵 正交匹配追踪 quick access recorder (QAR) compressive sensing (CS) sparse representation measurement matrix orthogonal matching pursuit (OMP)
  • 相关文献

参考文献10

  • 1孔成安,李文华,尹湛.利用QAR数据实施飞机性能监控[J].中国民用航空,2008(10):54-54. 被引量:19
  • 2祁明亮,邵雪焱,池宏.QAR超限事件飞行操作风险诊断方法[J].北京航空航天大学学报,2011,37(10):1207-1210. 被引量:30
  • 3曹海鹏,舒平,黄圣国.基于神经网络的民用飞机重着陆诊断技术研究[J].计算机测量与控制,2008,16(7):906-908. 被引量:24
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty principles: ex- act signal reconstruction from highly incomplete frequency informa- tion [J]. IEEE Trans. Inf. Theory, 2006, 52 (2): 489-509.
  • 5Donoho D L. Compressed sensing [J]. IEEE Trans. Inf. Theory, 2006, 52 (4): 1289-1306.
  • 6Chen S, Donoho D L, Saunders M A. Atomic decomposition by ba- sis pursuit [J]. SIAM J. Sci. Comput. , 1999, 20:33-61.
  • 7Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. Inf. Theory, 2007, 53 (12): 4655-4666.
  • 8Chartrand R, Yin W. Iteratively reweighted algorithms for com- pressive sensing [J]. Proc. Acoustics, Speech and Signal Process- ing, 2008: 3869-3872.
  • 9Mohimani H, Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smothed L0 norm [J]. IEEE Trans- actions on Signal Processing, 2009, 57 (1): 289- 301.
  • 10Tropp J, Gilbert A. Signal Recovery from Partial Information via Orthogonal Matching Pursuit [J]. IEEE Transactions on Informa- tinn Theory. 2007. 53 (12):4655-4868.

二级参考文献17

共引文献60

同被引文献30

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部