期刊文献+

基于K-均值聚类及二叉树决策的图像去噪 被引量:3

Image denoising based on K-Means clustering and binary tree decision
下载PDF
导出
摘要 针对图像中椒盐噪声的抑制,提出了一种新的滤波算法。算法首先借助K-均值聚类将当前像素所在邻域的灰度分布进行有效划分;然后,构建噪声污染像素识别规则,借助多层二叉树决策实现不同类型噪声污染像素的检测。算法只针对噪声污染像素进行自适应滤波,而不改变非污染像素的取值。实验表明,本文算法在有效抑制噪声的同时可较好保留图像的细节等有用信息;对于噪声污染严重的图像,本算法明显优于传统中值滤波及文献[7]的算法。 In this paper, a new filter algorithm was proposed for pepper-and-salt noise suppression. Firstly, the neighborhood of each given pixel is partitioned by K-means clustering according to the local grey level distribution. Secondly, the recognition rules for noise-polluted pixel detection are constructed, and the noise pixel can be detected based on multi-layer binary tree decision. The proposed algorithm only filters the recognized noise pixels without changing those non-polluted pixel values. Experimental results show that the proposed algorithm can efficiently preserve informative details when filte- ring image noise. For those images with strong noise pollution, the proposed algorithm outperforms both median filter and the algorithm proposed in[7].
出处 《计算机工程与科学》 CSCD 北大核心 2013年第5期118-123,共6页 Computer Engineering & Science
基金 国家自然科学基金天元数学基金资助项目(10926179) 河北省科学技术重大支撑计划资助项目(10243554D) 河北省科学技术研究与发展计划资助项目(072435158D 09213515D 09213575D)
关键词 椒盐噪声 K-均值聚类 二叉树 图像滤波 噪声检测 pepper-and-salt noise K-means clustering binary tree image filtering noise detection
  • 相关文献

参考文献2

二级参考文献19

  • 1宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 2石美红,毛江辉,梁颖,龙世忠.一种强高斯噪声的图像滤波方法[J].计算机应用,2007,27(7):1637-1640. 被引量:21
  • 3陆天华.数字图像处理[M].北京:清华大学出版社,2007.
  • 4BROWNRIGG D R K. The weighted median filter[J]. Communications of the ACM, 1984, 27(8): 807 -818.
  • 5KO S J, LEE Y H. Center weighted median filters and their applications to image enhancement[J]. IEEE Transactions on Circuits and Systems, 1991, 38(9): 984-993.
  • 6CHEN T, MA K K, CHEN L H. Tri-state median filter for image deonsing[ J]. IEEE Transactions on Image Processing, 1999, 8 (12) : 1834 - 1838.
  • 7HWANG H, HADDAD R A. Adaptive median filters: new algorithm and results [ J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502.
  • 8YANG X H, TOH P S. Adaptive fuzzy multilevel median filter[J]. IEEE Transactions on Image Processing, 1995, 4(5): 680 -682.
  • 9ENG H L, MA K K. Noise adaptive soft-switching median filter[ J]. IEEE Transactions on Image Processing, 2001, 10(2): 242 -251.
  • 10CHANG C C, HSIAO J Y, HSIEH C P. An adaptive median filter for image denoising[ C]//IEEE Second International Symposium on Intelligent Information Technology Application. Washington, DC: IEEE Computer Society, 2008:346 - 350.

共引文献14

同被引文献20

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部