期刊文献+

降维导向最小方差算法中的子阵优化划分技术 被引量:2

Subarray optimization and partition technology in dimension reduction steered minimum variance
下载PDF
导出
摘要 为提高降维导向最小方差(子阵STMV)波束形成器的性能,对子阵划分结构的影响进行分析.用编码的方法描述子阵的结构特点,建立一种编码子阵的熵值模型,利用熵值理论解决了子阵的最优划分问题.尤其是对于结构已知的缺失线列阵,通过模型的优化处理,可有效地解决缺失阵引起的高旁瓣问题.对某缺失线列阵仿真结果表明,优化后的STMV对高旁瓣抑制能力较CBF处理可提高10~18 dB.最后,通过海上试验数据处理,证明所提出模型的有效性及可行性. In order to improve the performance of the dimension reduction steered minimum variance(STMV-SA),the effects of the partition structure of subarray were analyzed.A 'coding' method was used to describe the structural features of the subarray,along with construction of an entropy model as well.By utilizing of the entropy theory,the optimum partitioned subarray was designed.The entropy method proved to be especially useful in resolving the linear array problem with sensors missing that resulted in high side-lobe that used conventional beamfomer(CBF).The simulation of a linear array with some sensors missing by this method demonstrates that the optimized STMV-SA is better than CBF with 10~18 dB lower side-lobe.The model is proved feasible and effective by sea trial data.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第4期445-449,共5页 Journal of Harbin Engineering University
基金 国防科学技术工业委员会基础研究基金资助项目(4010201060201)
关键词 子阵划分 子阵 STMV 缺失线列阵 熵值模型 partition structure of subarray steered minimum variance linear array entropy model
  • 相关文献

参考文献10

  • 1KROI,IK J, SWINGLER D. Mt, hiplc broadband source lo- cation using steered covariance matrix [ J ]. IEEE Trans on ASSP, 1989,37( 10 ) : 1481-1494.
  • 2STERGIOPOULOS S. Implementation of adaptive and syn- thetic-aperture processing schemes in integrated active-pas- sive sonar systems[ J ]. Proceedings of the IEEE, 1998,86 (2) : 358-396.
  • 3SWINGLER D N. A low-complexity MVDR beamformer for use with short observation times[ J ]. IEEE Trans Signal Pro- cessing, 1999,47 (4) : 1154-1160.
  • 4]SWINGLER D N. Steered adaptive subarray beamforming. DREA-CR-1999-0S9 [HI. IS. 1. ]:Defense R&D Canada, 1999.
  • 5陈阳,惠俊英.声矢量阵导向最小方差波束形成算法研究[J].哈尔滨工程大学学报,2008,29(11):1199-1204. 被引量:6
  • 6田坦,齐娜,孙大军.矢量水听器阵波束域MVDR方法研究[J].哈尔滨工程大学学报,2004,25(3):295-298. 被引量:15
  • 7王萍,钱斌,汪欣.多拍频率方差检测技术[J].声学技术,2011,30(3):228-230.
  • 8傅祖芸.信息论.基础理论与应用[M].北京:电子工业出版社,2004:15-37.
  • 9吴乐南.数据压缩[M].北京:电子工业出版社,2003.
  • 10Harray L.Van Trees,最优阵列信号处理技术[M].汤俊等,译.北京:清华大学出版社,2008:130-137.

二级参考文献21

  • 1田坦,齐娜,孙大军.矢量水听器阵波束域MVDR方法研究[J].哈尔滨工程大学学报,2004,25(3):295-298. 被引量:15
  • 2白兴宇,杨德森,姜煜,赵春晖.一种新的声矢量阵远程ESPRIT方位估计算法[J].哈尔滨工程大学学报,2006,27(6):891-895. 被引量:7
  • 3VAN TREE L. Optimum array processing[ M]. New York: John Wiley & Sons Inc. , 2003: 48.
  • 4CAPON J. High resolution frequency-wavenumber spectrum analysis[J]. Proceeding of the IEEE, 1969, 57(8) : 1404- 1418.
  • 5KROLIK J, SWINGLER D. Multiple broadband source location using steered covariance matrices [ J ]. IEEE Trans Acoustics Speech and Signal Processing, 1989, 37 (10): 1481-1494.
  • 6徐海东.基于矢量阵的高分辨方位估计技术研究[D].哈尔滨:哈尔滨工程大学,2005.
  • 7NAN Z. Vector hydrophone array development and its associated DOA estimation algorithms [ C ]//OCEANS 2006-Asia Pacific. Singapore, 2007.
  • 8NEHORAI A, PALDI E. Acoustic vector-sensor array processing[J]. IEEE Trans SP, 1994, 42(9) : 2481-2491.
  • 9HAWKES M, NEHORAI A. Acoustic vector-sensor beamforming and Capon direction estimation [ J ]. IEEE Trans on SP, 1998,46(4) : 2291-2301.
  • 10XU Yougen, LIU Zhiwen, CAO Jinliang. Perturbation analysis of conjugate MI-ESPRIT for single acoustic vectorsensor-based noncircular signal direction finding[ J]. IEEE Trans on SP, 2007, 87(7) : 1597-1612.

共引文献22

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部