一类非合作椭圆方程组非平凡解的存在性
Existence of Nontrivial Solutions of a Class of Noncooperative Elliptic Systems
摘要
考虑一类非合作椭圆方程组,运用广义弱环绕定理,使用单调技巧,证明了该椭圆方程组具有非平凡解.
Aiming at a class of noncooperative elliptic system,we obtained a nontrivial solution of this elliptic system using a generalized linking theorem and monotonicity technique.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2013年第3期363-368,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11071098)
关键词
非合作椭圆方程
弱环绕
单调性技巧
非平凡解
noncooperative elliptic system
weak linking
monotonicity trick
nontrivial solution
参考文献12
-
1Struwe M. The Existence of Surfaces of Constant Mean Curvature with Free Boundaries[J]. Acta Math, 1988, 1600): 19-64.
-
2Arnbrosetti A, Struwe M. Existence of Steady Vortex Rings in an Ideal Fluid[J]. Arch Rat Mech Anal, 1989, 108(2): 97-109.
-
3Struwe M. Existence of Periodic Solutions of Hamiltonian Systems on Almost Every Energy Surface[J]. Boletim Soc Bras Mat, 1990, 20(2): 49-58.
-
4Struwe M. Une Estimation Asymptotique Pourle Modele Ginzburg-Landau[J]. CR Acad Sci Paris: Ser I Math, 1993, 3J7(7): 677-680.
-
5eanjean L. On the Existence of Bounded Palais-Smale Sequences and Application to a Landesman-Lazer Type Problem Set on RN[J]. Proc Roy Soc Edinburgh: Sect A Math, 1999, 129(4): 787-809.
-
6CHEN Guan-wei , MA Shi-wang. Periodic Solutions for Hamiltonian Systems without Ambrosetti-Rabinowitz Condition and Spectrum 0[J].J Math Anal Appl , 2011, 379(2): 842-851.
-
7CHEN Guan-wei , MAShi-wang. Homoclinic Orbits of Superlinear Hamiltonian Systems[J]. Proc Amer Math Soc, 20]1, 139(1): 3973-3983.
-
8Schechter M, ZOU Wen-rning. Weak Linking Theorems and Schrodinger Equations with Critical Sobolev Exponent[J]. ESAIM: Control Optirn Calc Var, 2003, 9: 601-619.
-
9Schechter M, ZOU Wen-mingo Weak Linking[J]. Nonlinear Analysis: Theory, Method and Applications, 2003, 55(6): GQ5-706.
-
10YANG Min-be. Ground State Solutions for a Periodic Schrodinger Equation with Superlinear Nonlinearities[J]. Nonlinear Analysis: Theory, Method and Applications, 2010, 72(5): 2620-2627.