期刊文献+

一种凹形区域和简单宽边界区域间的拓扑关系表示模型

A Model Representing Topological Relations between Concave Region and Simple Broad Boundary Region
下载PDF
导出
摘要 基于交集矩阵表示方法,提出一种凹形区域和简单宽边界区域间的拓扑关系表示模型,并给出了3个约束条件,在此基础上得到了二维平面中实际存在的67种拓扑关系. On the basis of intersection matrix representation,we established a model representing the topological relation between concave region and simple broad boundary region.Three constraints were proposed that are reasonable,from which 67 topological relations that are realizable in 2D space were derived.
作者 王立君 富倩
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期487-490,共4页 Journal of Jilin University:Science Edition
基金 吉林省教育厅"十一五"科学技术研究项目(批准号:吉教科验字2011第287号) 吉林省世界银行贷款项目(批准号2011-Z20) 符号计算与知识工程教育部重点实验室开放项目基金(批准号:93K172012K11)
关键词 人工智能 凹形区域 简单宽边界区域 artificial intelligence concave region simple broad boundary region
  • 相关文献

参考文献12

  • 1Cohn A (;-, Hazarika S M. Qualitative Spatial Representation and Reasoning: An Overview [J]. Fundamental Informatics, 2001, 46(1/2): 1-29.
  • 2刘亚彬,刘大有.空间推理与地理信息系统综述[J].软件学报,2000,11(12):1598-1606. 被引量:33
  • 3刘大有,胡鹤,王生生,谢琦.时空推理研究进展[J].软件学报,2004,15(8):1141-1149. 被引量:34
  • 4Clementini E, Billen R. Modeling and Computing Ternary Projective Relations between Regions [J. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(6): 799-814.
  • 5Roussopoulos N, Faloutsos C, Sellis T. An Efficient Pictorial Database System for PSQL j. IEEE Transactions on Software Engineering, 1988, 14(5): 639-650.
  • 6Cohn A G, Bennett B, Gooday J, et al. Qualitative Spatial Representation and Reasoning with the Region Connection Calculus [-J. GeoInformatica, 1997, 1(3) : 275-316.
  • 7LI San-jiang. A Complete Classification of Topological Relations Using the 9-Intersection Method [J- International Journal of Geographical Information Science, 2006, 20(6): 589-610.
  • 8Roy A J, Stell J G. Spatial Relations between Indeterminate Regions E J]. International Journal of Approximate Reasoning, 2001, 27(3): 205-234.
  • 9Egenhofer M J, Vasardani M. Spatial Reasoning with a Hole [-C//Conference on Spatial Information Theory (COSIT-37). Berlin: Springer, 2007: 303-320.
  • 10欧阳继红,霍林林,刘大有,富倩.能表达带洞区域拓扑关系的扩展9-交集模型[J].吉林大学学报(工学版),2009,39(6):1595-1600. 被引量:21

二级参考文献124

  • 1欧阳继红,刘大有,胡鹤,陈博宇.一种基于模糊集的混合空间推理方法[J].吉林大学学报(理学版),2004,42(4):565-569. 被引量:7
  • 2虞强源,刘大有,欧阳继红.基于区间值模糊集的模糊区域拓扑关系模型[J].电子学报,2005,33(1):186-189. 被引量:13
  • 3欧阳继红,欧阳丹彤,刘大有.基于模糊集及RCC理论的区域移动模型[J].吉林大学学报(工学版),2007,37(3):591-594. 被引量:5
  • 4Randell D A, Cui Z,Cohn A G. A spatial logic based on regions and connection[C]//In:Nebel B,Ricb C, Swartout WR, eds. Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning. Sanmateo: Morgan Kaufmann Publishers, 1992 : 165-176.
  • 5Egenhofer M J, Franzosa R Do Point-set topological spatial relations [J].International Journal of Geographical Information Systems, 1991,5(2) :161-174.
  • 6Egenhofer M J, Herring J. Categorizing binary topological relationships between regions,lines and points in geographical database[R]. Department of Surveying Engineering, University of Maine, 1991.
  • 7Egenhofer M J, Clementini E, Di Feliee P. Topological relations between regions with holes[J]. International Journal of Geographical Information Systems, 1994,8(2):129-144.
  • 8Markus Schneider, Thomas Behr. Topological relationships between complex spatial objects [C] // ACM Transactions on Database Systems, 2006,31(1) :39-81.
  • 9Li San-jiang. A complete classification of topological relations using the 9-intersection method[J]. International Journal of Geographical Information Science, 2006,20(6) :589-610.
  • 10Egenhofer M J, Vasardani M. Spatial reasoning with a hole[C]//Conference on Spatial Information Theory(COSIT'07), Melbourne, Australia, Lecture Notes in Computer Science. Heidelberg: Springe Berlin, 2007: 303-320.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部