期刊文献+

非完整统计在完全开放系统中的概率分布 被引量:3

The Probability Distribution of Incomplete Statistics in Completely Open Systems
下载PDF
导出
摘要 非完整统计是非广延统计力学发展的一个分支。在简要介绍非完整统计思想的基础上,根据最大熵原理,结合非完整熵推导了完全开放系统中的概率分布和配分函数,以此分布可以直接得出其他实际可用的6种统计分布。这对研究多粒子体系的复杂物理系统提供理论依据。 A branch of the development of the nonextensive statistics is incomplete statistics. In this paper, the idea of nonextensive statistics is introduced briefly. According to the maximum entropy principle, the probability distribution based on the incomplete entropy is deduced in the completely open system, and the other six actual usable probability distributions can be obtained directly from it, which have provided theoretical basis for studying the particle system of complex physical systems.
机构地区 银川能源学院
出处 《大理学院学报(综合版)》 CAS 2013年第4期33-36,共4页 Journal of Dali University
关键词 非完整统计 概率分布 完全开放系统 incomplete statistics probability distribution completely open system
  • 相关文献

参考文献6

  • 1张金,李鹤龄.统计热力学[M].银川:宁夏人民出版社,1999:1-7.
  • 2曹克非,王参军.Tsallis熵与非广延统计力学[J].云南大学学报(自然科学版),2005,27(6):514-520. 被引量:22
  • 3Tsallis C.Possible generalization of Boltzmann -Gibbsstatistics[J]. J Stat Phys, 1988,52 (1-2):479- 487.
  • 4Li Heling, Xiong Ying, Li Yaya.The Tsallis statisticaldistribution in completely open system[ J]. Physica A,2011,390(15):2769-2775.
  • 5Henry E Kandrup. Mixing and “violent relaxation" for theone-dimensional gravitational Coulomb gas[J]. Phys RevA,1989,40(12):7265-7274.
  • 6Wang Qiuping A. Incomplete statistics and nonextensivegeneralizations of statistical mechanics[J]. Chaos,Solitonsand Fractals, 2001 (12) : 1431-1437.

二级参考文献51

  • 1SASLAW W C. Gravitational physics of stellar and galactic systems[M]. Cambridge: Cambridge University Press, 1985.
  • 2RISKEN H. The Fokker-Planck equation: methods of solution and applications [ M ]. Berlin: Springer-Verlag,1984.
  • 3CYACERES M O. Non-Markovian processes with long-range correlations: fractal dimension analysis [ J ]. Braz J Phys, 1999, 29 (1) : 125-135.
  • 4SCIAMA D W. Peculiar velocity of the sun and the cosmic microwave background[J]. Phys Rev Lett, 1967, 18(24) : 1 065-1 067.
  • 5BAHCALL N A, OH S P. The peculiar velocity function of galaxy clusters[J]. Astrophys J, 1996, 462(2) : IA9-I52.
  • 6MONTROLL E W, SHLESINGER M F. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise:a tale of tails[J] .J Stat Phys, 1983, 32(2) :209-230.
  • 7TSALLIS C, PLASTINO A R, ZHENG W-M. Powerlaw sensitivity to initial conditions-new entropic representation[J]. Chaos Solitons and Fractals, 1997, 8 (6) :885-891.
  • 8TSALLIS C. Possible generalization of boltzmann-gibbs statistics[J]. J Star Phys, 1988, 52 (1-2) : 479-487.
  • 9PLASTINO A R, PLASTINO A. Tsallis' entropy,Ehrenfest theorem and information theory [ J ]. Phys Lett A, 1993, 177(3):177-179.
  • 10TSALLIS C, LEVY S V F, SOUZA A M C, et al. Statistical-mechanical foundation of the ubiquity of Levy distributions in nature [J ]. Phys Rev Lett, 1995, 75(20) : 3 589-3 593 [ Erratum: Phys Rev Lett, 1996, 77(27) :5 442].

共引文献21

同被引文献19

  • 1曹克非,王参军.Tsallis熵与非广延统计力学[J].云南大学学报(自然科学版),2005,27(6):514-520. 被引量:22
  • 2李鹤龄.第八种统计分布与涨落[J].宁夏大学学报(自然科学版),2005,26(3):240-242. 被引量:3
  • 3TSALLIS C. Possible generalization of Boltzmann-Gibbs statistics [J]. J Stat Phys, 1988 , 52 (1-2) : 479-487.
  • 4HUANG X P,DRISCOLL C F. Relaxation of 2Dturbulence to a metaequilibrium near the minimal en-strophy state [J]. Phys Rev Lett, 1994,72 : 2187-2191.
  • 5HUANG X P, ANDEREGG F,HOLLMANN E M,et al. Steady-State confinement of non-neutral plas-mas by rotating electric fields [J]. Phys Rev Lett,1997,78:875-878.
  • 6ANTENEODO C,TSALLIS C. Two-dimensionalturbulence in pure-electron plasma: A nonextensivethermostatistical description[J], J Mol Liq, 1997, 71 :255 - 267.
  • 7TSALLIS C,MENDES R S, PLASTINO A R. Therole of constraints within generalized nonextensivestatistics[J]. Physica A,1998,261:534-554.
  • 8Qiuping A. Wang. Incomplete statistics and nonex-tensive generalizations of statistical mechanics [J].Chaos. Solitons and Fractals,2001,12: 1431-1437.
  • 9Qiuping A. Wang. Nonextensive statistics and in-complete information[J]. Euro Phys J B,2002(26):357*368.
  • 10Qiuping A. Wang. Incomplete information and frac-tal phase space [J]. Chaos, Solitons and Fractals,2004(19):639-644.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部