期刊文献+

PrivateCheckIn:一种移动社交网络中的轨迹隐私保护方法 被引量:69

PrivateCheckIn:Trajectory Privacy-Preserving for Check-In Services in MSNS
下载PDF
导出
摘要 移动设备的发展及无线网络的普及促使移动社交网络的出现及发展.签到服务作为移动社交网络中的主流应用,存在着严重的轨迹隐私泄露风险.文中针对签到服务中假名用户的轨迹隐私泄露问题,提出了一种轨迹隐私保护方法PrivateCheckIn.该方法设计了一种签到序列缓存机制,通过为缓存的签到序列建立前缀树、对前缀树进行剪枝及重构形成k-匿名前缀树,遍历k-匿名前缀树得到k-匿名签到序列,达到了轨迹k-匿名的隐私保护效果.文中证明了PrivateCheckIn方法既能保护假名用户的轨迹隐私,又确保损失签到位置最少,有效地保证了用户体验.通过构建前缀树的方式获取轨迹k-匿名集降低了计算代价.最后,文中在真实数据集上与(k,δ)-anonymity方法进行了充分的对比实验,验证了PrivateCheckIn方法的准确性与有效性. With the development of mobile devices and wireless networks,mobile social network services(MSNS) arise and develop fast.Check-in service as one of the most popular services in MSNS,has serious personal privacy leakage threats.In this paper,we propose a trajectory privacy-preserving method called PrivateCheckIn,which can protect trajectory privacy for pseudonym users in check-in services.At first,we buffer the check-in sequences of pseudonym users,and then we build prefix trees for buffered check-in sequences,prune and re-construct prefix trees to get the k-anonymized version.At last,we traverse the k-anonymized prefix tree to get k-anonymized check-in sequences,which can achieve a privacy guarantee of k-anonymity.We prove in this paper,PrivateCheckIn guarantees the number of lost check-in locations is minimized while satisfying users' privacy requirements.PrivateCheckIn also reduces the cost of finding trajectory k-anonymity set.At last,we run a set of comparative experiments with(k,δ)-anonymity on real-world datasets,the results show accuracy and effectiveness of PrivateCheckIn.
出处 《计算机学报》 EI CSCD 北大核心 2013年第4期716-726,共11页 Chinese Journal of Computers
基金 国家自然科学基金(61070055 91024032 91124001) 国家"八六三"高技术研究发展计划项目基金(2012AA010701 2013AA013204) 中国人民大学科学研究基金(11XNL010)资助~~
关键词 数据库应用 隐私保护 位置隐私 轨迹隐私 移动社交网络 database application privacy-preserving location privacy trajectory privacy mobile social networks
  • 相关文献

参考文献19

  • 1Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking//Pro-ceedings of the International Conference on Mobile Systems.Applications, and Services (MobiSys,03). San Fransisco,USA, 2003; 31-42.
  • 2霍峥,孟小峰.轨迹隐私保护技术研究[J].计算机学报,2011,34(10):1820-1830. 被引量:109
  • 3Pan X, Xu J,Meng X. Protecting location privacy againstlocation-dependent attacks in mobile services. IEEE Transac-tions on Knowledge and Data Engineering, 2012, 24 (8):1506-1519.
  • 4Mokbel M F, Chow C Y,Aref W G. The newcasper:Queryprocessing for location services without compromising privacy//Proceedings of the 32nd Conference of Very Large Databases(VLDB 2006). Seoul, 2006:763-774.
  • 5Bamba B,Liu L. Supporting anonymous location queries inmobile environments with privacy grid//Proceedings of the17th International Conference on World Wide Web (WWW2008). Beijing, 2008; 237-246.
  • 6Krumm J. A survey of computational location privacy.Personal and Ubiquitous Computing, 2009,13(6):391-399.
  • 7Huo Z, Meng X, Hu H,Huang Y. You can walk alone:Trajectory privacy-preserving through significant stays pro-tection//Proceedings of the 17th International Conference onDatabase Systems for Advanced Applications (DASFAA,12).Busan, Korea,2012:351-366.
  • 8You T H, Peng W C,Lee W C. Protecting moving trajecto-ries with dummies//Proceedings of the 8th InternationalConference on Mobile Data Management (MDM,07). Mann-heim, Germany, 2007 ; 278-282.
  • 9Terrovitis M, Mamoulis N. Privacy preserving in the publi-cation of trajectories//Proceedings of the 9th InternationalConference on Mobile Data Management (MDM,08). Bei-jing, China, 2008:65-72.
  • 10Gruteser M, Liu X. Protecting privacy in continuous locationtracking applications. IEEE Security and Privacy, 2004,2(2):28-34.

二级参考文献34

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Gruteser M, Grunwald D. Anonymous usage of locationbased services through spatial and temporal cloaking//Proceedings of the 1st International Conference on Mobile Sys tems, Applications, and Services (MobiSys 2003). San Fransisco, 2003: 31 -42.
  • 3Mokbel M F, Chow C Y, Aref W G. The newcasper: Query processing for location services withoutcompromising privacy//Proceedings of the 32nd Conference of Very Large Databases (VLDB 2006). Seoul, 2006: 763-774.
  • 4Bamba B, Liu L. Supporting anonymous location queries in mobile environments with privacy grid//Proceeding of the 17th International Conference on World Wide Web (WWW 2008). Beijing, 2008:237-246.
  • 5Pan X, Meng X, Xu J. Distortion-based anonymity for continuous queries in location-based mobile services//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2009). Washington, 2009:256-265.
  • 6Krumm J. A survey of computational location privacy. Personal and Ubiquitous Computing, 2009, 13(6): 391-399.
  • 7Bettini C, Wang S X, Jajodia S. Protecting privacy against location-based personal identification//Proceedings of the 2nd VLDB workshop on Secure Data Management (SDM2005). Trondheim, 2005:185-199.
  • 8Krumm J. Inference attacks on location tracks//Proceedings of the 5th International Conference on Pervasive Computing (PERVASIVE 2007). Toronto, 2007:127-143.
  • 9Luper D, Cameron D, Miller J A, Arabnia H R. Spatial and temporal target association through semantic analysis and GPS data mining//Proceedings of the 2007 International Conference on Information & Knowledge Engineering (IKE 2007). LasVegas, 2007:251-257.
  • 10Xu T, Cai Y. Exploring historical location data for anonymity preservation in location-based services//Proceedings of the 27th Conference on Computer Communications (INFOCOM 2008). Phoenix, 2008:547-555.

共引文献108

同被引文献405

引证文献69

二级引证文献406

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部