期刊文献+

L3^*中逻辑公式的范式表示及对称逻辑公式的构造方法 被引量:2

The Normal Form of Logic Formulae and Construction Method of Symmetrical Logic Formulae in L3
下载PDF
导出
摘要 将符号化计算树逻辑中Boole函数的Shannon展开式做了推广,研究了三值逻辑系统L3*中由公式导出的三值R0函数的展开式,给出了L3*中逻辑公式的准析取范式和准合取范式表示.研究了n元三值R0函数以及n元逻辑公式逻辑等价类的计数问题.在此基础上,给出了L3*中对称逻辑公式的构造方法. Shannon expansion of Boole function in symbolic computation tree logic is generalized. In three-valued logic system L3*, the expansions of symmetric three-valued R0 function which are induced by logical formulae are studied, and the quasi disjunctive normal form and quasi conjunc- tive normal form of logical formulae are given. The counting problems of n-ary three-valued R0 functions and n-ary logical formulae are studied. Then the construction method of symmetrical logic formulae in L3* is given.
作者 王庆平
出处 《计算机学报》 EI CSCD 北大核心 2013年第4期851-861,共11页 Chinese Journal of Computers
基金 国家自然科学基金(11171200 61005046 61103133) 教育部高等学校博士学科点专项科研资金(20100202120012)资助~~
关键词 Shannon展开式 三值R0函数 对称逻辑公式 范式表示 计数问题 Shannon expansion three-valued R0 function symmetrical logic formulae normalform counting problem
  • 相关文献

参考文献11

  • 1Baier C, Katoen J-P. Principles of Model Checking. London,UK:The MIT Press Cambridge, 2008.
  • 2Dasgupta P,Chakrabarti P P, Deka J K,SankaranarayananS. Min-max computation tree logic. Artificial Intelligence,2001, 127(1):137-162.
  • 3Ivanfi6 F,Yang Z J,Ganai M K,Gupta A, Ashar P. Effi-cient SAT-based bounded model checking for software verifi-cation. Theoretical Computer Science, 2008,404(3):256-274.
  • 4Basagiannis S,Katsaros P,Pombortsis A. An intruder modelwith message inspection for model checking security proto-cols. Computer Security, 2010,29(1):16- 34.
  • 5Burkart 0,Steffen B. Model checking the full modalmu-calculus for infinite sequential processes. TheoreticalComputer Science, 1999 , 221(1-2):251-270.
  • 6钱俊彦,徐宝文.基于完备抽象解释的模型检验CTL公式研究[J].计算机学报,2009,32(5):992-1001. 被引量:5
  • 7Raimondi F,Lomuscio A. Automatic verification of multi-agent systems by model checking via ordered binary decisiondiagrams. Journal of Applied Logic, 2007, 5(2):235-251.
  • 8Stanica Pantelimon, Maitra Subhamoy. Rotation symmetricBoolean functions-Count and cryptographic properties.Discrete Applied Mathematics, 2008,156 (10):1567-1580.
  • 9Sarkar Palash, Maitra Subhamoy. Balancedness and correla-tion immunity of symmetric Boolean functions. DiscreteMathematics,2007,307C19-20):2351-2358.
  • 10王庆平,王国俊.对称逻辑公式在L3^*逻辑度量空间中的分布[J].计算机学报,2011,34(1):105-114. 被引量:10

二级参考文献41

  • 1胡明娣,王国俊.经典逻辑度量空间上的反射变换[J].陕西师范大学学报(自然科学版),2009,37(6):1-4. 被引量:13
  • 2王国俊,李璧镜.Lukasiweicz n值命题逻辑中公式的真度理论和极限定理[J].中国科学(E辑),2005,35(6):561-569. 被引量:141
  • 3王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215. 被引量:199
  • 4惠小静,王国俊.经典推理模式的随机化研究及其应用[J].中国科学(E辑),2007,37(6):801-812. 被引量:115
  • 5Clarke E M, Grumberg O, Peled D A. Model Checking. Massachusetts: MIT Press, 1999
  • 6Clarke E M, Grumberg O, Long D E. Model checking and abstraction. ACM Transactions on Programming Languages and Systems (TOPLAS), 1994, 16(5): 1512-1542
  • 7Clarke E M, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement//Proceedings of the 12th International Conference on Computer Aided Verification (CAV). LNCS 1855. Chicago, 2000:154-169
  • 8Clarke E M, Jha S, Lu Y, Veith H. Tree-like counterexamples in model cheeking//Proceedings of the IEEE Symposium on Logic in Computer Science (LICS). Copenhagen, 2002: 19-29
  • 9Cousot P, Cousot R. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints//Proceedings of the 6th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). Los Angeles, California, 1977, 238-252
  • 10Cousot P, Cousot R. Abstract interpretation frameworks. Journal of Logic and Computation, 1992, 2(4) : 511-547

共引文献13

同被引文献23

  • 1胡明娣,王国俊.经典逻辑度量空间上的反射变换[J].陕西师范大学学报(自然科学版),2009,37(6):1-4. 被引量:13
  • 2王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215. 被引量:199
  • 3惠小静,王国俊.经典推理模式的随机化研究及其应用[J].中国科学(E辑),2007,37(6):801-812. 被引量:115
  • 4王国俊,惠小静.概率逻辑学基本定理的推广[J].电子学报,2007,35(7):1333-1340. 被引量:41
  • 5Wang Guo-jun. Leung Y. Integrated semantics and logic metricspaces [J]. Fuzzy Sets and Systems, 2003,136 (1) : 71-91.
  • 6Ying Ming-sheng. A logic for approximate reasoning [J]. Jour-nal of Symbolic Logic, 1994,59:830-837.
  • 7Pei Dao-wu,Wang G J. The extensions of formal systems L.and their completeness [J]. Information Sciences,2003,152;155-166.
  • 8Wang G J, Leung Y. Integrated semantics and logicmetric spaces[J]. Fuzzy Sets and Systems, 2003,136 (1):71 91.
  • 9Wang G J, Zhou H J. Introduction to mathematical logic and resolution principle[M]. Co-published by Oxford: Alpha Science International Limited and Beijing:Science Press,2009.
  • 10Wang G J, Zhou H J. Quantitative logic [J]. Information Sciences, 2009,179 (3) : 226 - 247.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部