期刊文献+

关于右FPP-平坦分解的正合性

On the Exactness of Right FPP-flat Resolution
原文传递
导出
摘要 利用FPP-平坦模类来研究模的预包络,证明了模的FPP-平坦预包络总是存在的,刻画了使得模的右FPP-平坦分解中第n项为HomR(-,P)-正合的第n个FPP-平坦预包络性模P,给出了模的右FPP-平坦分解为正合复形的等价条件. Use the class of FPP-fiat modules to investigate preenvelopes of modules, prove that every module has an FPP-flat preenvelope, characterize the nth FPP-flat preenveloping module P such that every right FPP-flat resolution of each module is HomR (-,P) -exact at the nth item, and give some equivalent conditions such that every right FPP-flat resolution of each module is ex- act.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期10-14,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2006J0220) 福建省教育厅资助项目(JA12273)
关键词 FPP-内射模 FPP-平坦模 预包络 FPP-injective module FPP-flat module preenvelope
  • 相关文献

参考文献9

  • 1Mao Lixin, Ding Nanqing. On divisible and torsionfree modules [J]. Comm Algebra, 2008, 36 (2) : 708 -731.
  • 2Xue Weimin. On PP-rings [J]. Kobe J Math, 1990, 7 (1) : 77-80.
  • 3Enochs E. Injective and flat covers, envelopes and resolvents [J]. Israel J Math, 1981, 39 (3) : 189 -209.
  • 4Enochs E, Jenda 0 M G. Relative homological algebra [ M ]. Berlin, New York: Walter de Gruyter, 2000.
  • 5Rada J, Saorin M. Rings characterized by (pre) envelopes and (pre) covers of their modules [ J ]. Comm Algebra, 1998, 26:899-912.
  • 6Xu Jinzhong. Flat covers of modules [ M ]. Berlin, Heidelberg, New York: Springer-Verlag, 1996.
  • 7Anderson F W, Fuller K R. Rings and categories of modules [ M]. 2nd . New York: Spring-Verlag, 1992.
  • 8Rotman J J. An introduction to homological algebra [ M ]. New York: Academic Press, 1979.
  • 9Glaz S. Commutative coherent rings [M]. Berlin: Springer-Verlag, 1959.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部