期刊文献+

基于感知器神经网络的金属磁记忆检测管道缺陷分析 被引量:7

Analysis of Pipeline Defects by Metal Magnetic Memory Detection Based on Perceptron Neural Network
下载PDF
导出
摘要 感知器神经网络可以在采用金属磁记忆技术查找管道隐性损伤的基础上,有效识别应力集中和宏观裂纹。对4项线性指标的感知器神经网络的计算机仿真分析,100次模拟的平均诊断正确率为71.2%。增加切向梯度和法向梯度乘积项的感知器神经网络识别效果最好,其100次模拟的平均诊断正确率达到了90.7%,显著高于线性模型的识别效果,可有效应用于金属磁记忆的管道缺陷监测。 The stress concentration and macroscopic crack between could be effectively distinguished by the perceptron neural network, on basis of hidden pipeline damages found by using the technology of metal magnetic memory. The average diagnostic accu- racy rate of 100 times of computer simulation analysis was reached 71.2% via perceptron neural network by 4 linear indexes. When adding the product of tangential gradient and normal gradient of perceptron neural network, the distinguish effect was at optimal, and the average diagnostic accuracy rate of 100 simulations was reached 90. 7%, which is significantly higher than that of the linear model, so it can be used effectively to detect the pipeline defects of metal magnetic memory.
出处 《机床与液压》 北大核心 2013年第9期186-188,共3页 Machine Tool & Hydraulics
基金 中国人民解放军总后勤部资助项目(油20040207)
关键词 金属磁记忆 感知器神经网络 管道缺陷 Metal magnetic memory Perceptron neural network Pipeline defect
  • 相关文献

参考文献4

二级参考文献17

  • 1钟文定.铁磁学[M].北京:科学出版社,1987.231-232.
  • 2Doubov Anatoli A. Diagnostics of metal items and equipment by means of metal magnetic memory[A].Proceedings of ChsNDT 7th Conference on NDT and International Research Symposium [C]. Shantou:Non-Destructive Testing Institution, CMES, 1999.181~187.
  • 3Jonathan R Wolpaw,Niels Birbaumer,Dennis J McFarland.Brain-computer interfaces for communication and control[J].Clinical Neurophysiology,2002; 113:767~791
  • 4Thilo Hinterbergera,Andrea Ku"blera.A brain-computer interface (BCI) for the locked-in:comparison of different EEG classifications for the thought translation device[J].Clinical Neurophysiology,2003;114:416~425
  • 5Fabio Babiloni,Febo Cincotti,Luigi Bianchi f.Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers[J].Medical Engineering & Physics,2001;23:323~328
  • 6Ernane J X Costa,Euvaldo F Cabral Jr.EEG-based discrimination between imagination of left and right hand movements using adaptive gaussian representation[J].Medical Engineering & Physics,2000; 22:345~348
  • 7C Neupera,b G R Mu"llerb,A Ku"blerc.Clinical application of an EEG-based brain-computer interface:a case study in a patient with severe motor impairment[J].Clinical Neurophysiology,2003; 114:399~409
  • 8Dubov A A.Express method of quality control of a spot resistance welding with usage of metal magnetic memory[J].Welding inthe World,2002,46(6):317-320.
  • 9Jiles D C.Theory of the magneto-mechanical effect[J].Journal of Applied Physics,1995,28:1537-1546.
  • 10黄克琴,杨节,杨觉先,等.塑性变形的物理基础[M].北京:冶金工业出版社,1989:401-403.

共引文献52

同被引文献67

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部