期刊文献+

多天线认知系统中最优协作用户数的选择研究 被引量:2

The Research of Optimal Number of Collaboration Users in Multi-antenna CR system
下载PDF
导出
摘要 针对非理想控制信道传输错误对认知系统中多天线多用户协作频谱感知性能影响的问题,提出一种使得认知系统误检概率最小的最优协作用户数选择方案,并推导给出其闭式表达式。该方案首先根据单根天线错误检测概率最小的原则推导出认知用户单根天线最优的判决门限。然后利用"K秩"准则对多天线进行合并,根据认知用户错误检测概率最小的原则推导出最优的"K"值。最后根据认知系统误检概率最小的原则推导出最优的协作感知用户数。通过仿真验证了该方案理论的正确性,并分析给出了控制信道错误概率对认知系统检测性能的影响。相比于传统的协作检测算法,本方案具有更好的检测性能。 In view of the effect on the sensing performance of multi-antenna multi-user in cognitive radio (CR) system by imperfect control channel, an optimal selection scheme of the number of collaboration users that minimizes the error de- tection probability of CR system is proposed, and the closed expression of the optimal number of collaboration users is dem- onstrated. The algorithm firstly analyzes the decision threshold of each antenna of CR user based on the minimal error de- tection probability. Secondly, "K" rank rule to merge the multi-antenna is adopted, and the optimal "K" value is deduced based on minimal error detection probability of each CR user. Thirdly, the optimal number of collaboration users is deduced based on minimal error detection probability of the system. The validity of theoretical derivation is proved through simula- tion, and the effect on CR system by the error probability of control channel is analyzed. From a detection performance per- spective, the proposed 'scheme is advantageous comparing with conventional collaboration detection algorithms.
出处 《信号处理》 CSCD 北大核心 2013年第5期625-631,共7页 Journal of Signal Processing
基金 国家科技重大专项(2011ZX03003-003-02)
关键词 认知无线电 频谱感知 多天线 最优协作用户数 Cognitive Radio Spectrum Sensing Multi-antenna The Optimal Number of Collaboration Users
  • 相关文献

参考文献4

二级参考文献40

  • 1Goldsmith A, Jafar S A, Maric I, et al. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 2009, 97(5): 894-914.
  • 2Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrum sensing for cognitive radios. In: Proceedings of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2004: 772-776.
  • 3Tandra R, Sahai A. Fundamental limits on detection in low SNR under noise uncertainty. In: Proceedings of International Conference on Wireless Networks, Communications and Mobile Computing. Maul, HI, USA, 2005: 464-469.
  • 4Chen H S, Gao Wen, Daut D G. Signature based spectrum sensing algorithms for IEEE 802.22 WRAN. In: Proceedings of IEEE International Conference on Communications Glasgow, Scotland, 2007: 6487-6492.
  • 5Han Ning, Shon S H, Chung J H, et al. Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems. In: Proceedings of the 8th International Conference on Advanced Communication Technology. Phoenix Park, Korea, 2006.
  • 6Wang Haijun, Xu Yi, Su Xin, et al. Cooperative spectrum sensing with wavelet denoising in cognitive radio. In:Proceedings of 2010 IEEE 71st Vehicular Technology Conference. Taipei, China, 2010: 1-5.
  • 7Zhang Wei, Mallik R K, Letaief K B. Cooperative spectrum sensing optimization in cognitive radio networks. In: Proceedings of IEEE International Conference on Communications. Beijing, China, 2008:3411-3415.
  • 8Chen Yunfei. Optimum number of secondary users in collaborative spectrum sensing considering resources usage efficiency. Communications Letters, 2008, 12(12): 877-879.
  • 9Shen Bin, Huang Longyang, Zhao Chenshi, et al. Weighted cooperative spectrum sensing in cognitive radio networks. In: Proceedings of Third International Conference on Convergence and Hybrid Information Technology. Busan, Korea, 2008: 1074-1079.
  • 10Quan Zhi, Cui Shuguang, Sayed A H. Optimal linearcooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2008, 2 (1): 28-40.

共引文献27

同被引文献29

  • 1Wang P, Fang J, Han N, et al. Multiantenna-assisted spec-trum sensing for cognitive radio [ J ]. Vehicular Technology,IEEE Transactions on, 2010 , 59(4) : 1791-1800.
  • 2Wimalajeewa T, Varshney P K. Polarity-coincidence-ar-ray based spectrum sensing for multiple antenna cognitiveradios in the presence of non-Gaussian noise [ J]. Wire-less Communications, IEEE Transactions on, 2011,10(7) : 2362-2371.
  • 3Zahabi S J,Tadaion A A. Local spectrum sensing in non-Gaussian noise [ C ] // Telecommunications (ICT),2010IEEE 17th International Conference on. IEEE, 2010 :843-847.
  • 4Zhu X M,Champagne B,Zhu W P. Rao test based coop-erative spectrum sensing for cognitive radios in non-Gaussi-an noise[ J]. Signal Processing,2014,97: 183-194.
  • 5Moghimi F, Nasri A, Schober R. Adaptive L—p—NormSpectrum Sensing for Cognitive Radio Networks [ J ].Communications, IEEE Transactions on, 2011,59(7):1934-1945.
  • 6Zhu X M, Zhu W P, Champagne B. Spectrum sensingbased on fractional lower order moments for cognitive ra-dios in a-stable distributed noise [ J ]. Signal Processing,2015,111: 94-105.
  • 7Yang M S, Lai C Y,Lin C Y. A robust EM clustering al-gorithm for Gaussian mixture models [ J ] ? Pattern Recog-nition, 2012,45(11) : 3950-3961.
  • 8metric cyclic correlation-based spectrum sensing for cog-nitive radio [ J ]. Signal Processing,IEEE Transactionson, 2010,58(1); 38-52.
  • 9Proakis J G. Digital Communications [ M ]. Fifth Edi-tion. New York: McGraw-Hill,2007:853-859.
  • 10Shen L,Wang H,Zhang W, et al. Multiple antennas assis-ted blind spectrum sensing in cognitive radio channels [ J ] .Communications Letters, IEEE, 2012,16(1) : 92-94.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部