期刊文献+

基于流形正则化判别的因子分解 被引量:1

Manifold regularized-based discriminant concept factorization
原文传递
导出
摘要 通过对非负矩阵分解(non-negative matrix factorization,NMF)和因子分解(concept factorization,CF)的分析,针对它们无法核化或忽略数据几何结构和判别信息的问题,提出了基于流形正则化判别的因子分解算法(manifold regularized-based discriminant concept factorization,MRCF)。该算法用CF算法对数据进行低维非负分解时,根据流形学习的图框架理论,构建邻接矩阵保持数据局部几何结构;利用样本的标签信息,进行监督学习,给出算法多步更新规则,理论上证明了MRCF算法的收敛性。在人脸数据库ORL、图像库COIL20和手写体数据库USPS上的仿真结果表明,相对于NMF、CF及其一些改进算法,MRCF均具有更高的聚类精度。 Non-negative matrix factorization(NMF) and concept factorization(CF) can be found not to make use of the power of kernelization or pay any attention to the geometric structure and the label information of the data.A novel algorithm called manifold regularized-based discriminant concept factorization(MRCF).When original data is factorized in lower dimensional space using CF,MRCF preserves the intrinsic geometry of data,using the label information as supervised learning,producing an efficient multiplicative updating procedure and providing the convergence proof of our algorithm.Compared with NMF,CF and its improved algorithms,experimental results of ORL face database,COIL20 image database and USPS handwrite database have shown that the proposed method achieves more highly clustering precision.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第5期63-69,共7页 Journal of Shandong University(Natural Science)
基金 西北民族大学中央高校基本科研业务费专项资金项目(31920130053) 国家自然科学基金资助项目(61162021) 西北民族大学科研创新团队计划资助项目
关键词 图像聚类 流形学习 因子分解 判别分析 image clustering manifold learning concept factorization discriminant analysis
  • 相关文献

参考文献12

  • 1LEE DANIEL D, SEUNG H SEBASTIAN. Algorithms for nonnegative matrix factorization [J]. Advances in Neural Informa- tion Processing Systems, 2000, 12:556-562.
  • 2XU Wei, GONG Yihong. Document clustering by concept factorization [ C ]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2004:202-209.
  • 3CAI Deng, HE Xiaofei, HAN Jiawei. Graph regularized Non-negative matrix factorization for data representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 8 ) : 1548-1560.
  • 4LIU Xiaobai, YAN Shuicheng, HUI Jin. Projective nonnegative graph embedding [J]. IEEE Transactions on Image Process- ing, 2010, 19(5) : 1126-1137.
  • 5YUAN Zhijian, OJA E. Projective nonnegative matrix factorization for image compression and feature extraction[J]. Lecture Notes in Computer Science, 2005, 3540:333-342.
  • 6GUAN Naiyang, TAO Dacheng, LUO Zhigang, et al. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent [J]. IEEE Transactions on Image Process, 2011, 20 (7) : 2030-2048.
  • 7姜伟,杨炳儒,隋海峰.局部敏感非负矩阵分解[J].计算机科学,2010,37(12):211-214. 被引量:5
  • 8HUA Wei, HE Xiaofei. Discriminative concept factorization for data representation E J ]. Neurcomputing, 2011, 74 ( 18 ) : 3800- 3807.
  • 9CAI Deng, HE Xiaofei, HAN Jiawei. Locally consistent concept factorization for document clustering E J ]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23 (6) :902-913.
  • 10XU Dong, YAN Shuicheng, TAO Dacheng, et al. Marginal fisher analysis and its variants for human gait recognition and content-based imaee retrieval [J]. IEEE Transactions on Image Processing. 2007. 16 (11 ) :2811-2821.

二级参考文献10

  • 1Ding C,Li T,Peng Wet al.Orthogonal nonnegative matrix t-factorizations for clustering[].Proceedings of the thACMSIGKDD International Conference.2006
  • 2Cai Deng,He Xiaofei,Wu Xiaoyunet al.Non-negative matrixfactorization on manifold[].ICDM.2008
  • 3Cai Deng,He Xiao-fei.Locality sensitive discriminant analysis[].International Joint Conference on Artificial Intelligence.2007
  • 4Hoyer P O.Non-negative sparse coding[].ProcIEEE Work-shop on Neural NetwSignal Process.2002
  • 5Liu W X,Zheng N N,Lu X F.Non-negative matrix factorizationfor visual coding[].Proceedings of the IEEE InternationalConference on AcousticsSpeechand Signal Processing.2003
  • 6Wang Yuan,Jia Yunde,Hu Changboet al.Fisher non-negativematrix factorization for learning local features[].ACCV.2004
  • 7Lee DD,Seung H.Learning the parts of objects by non-negative matrix factorization[].Nature.1999
  • 8Stan Z Li,Xin Wen Hou,HongJiang Zhang,et al.Learning spatially localized,parts-based representation[].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2001
  • 9Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding[].Science.2000
  • 10He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using laplacianfaces[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005

共引文献4

同被引文献39

  • 1CHEN Yan, ZHANG Jiemi, CAI Deng, et al. Nonnegative local coordinate factorization for image representation[J]. IEEE Transactions on Image Processing, 2013, 22(3):969-980.
  • 2GUAN Naiyang, TAO Dacheng, LU Zhigang, et al. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent[J]. IEEE Transactions on Image Processing, 2011, 20(7):2030-2048.
  • 3ZHENG C H, HUANG D S, ZHANG L, et al. Tumor clustering using nonnegative matrix factorization with gene selection[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 15(2):599-607.
  • 4CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2011, 23(6):902-913.
  • 5YOO Jiho, CHOI Seungjin. Orthogonal nonnegative matrix tri-factorization for co-clustering:multiplicative updates on Stiefel manifolds[J]. Information Processing and Management, 2010, 46(5):721-732.
  • 6LEE Seokjin, PARK Sangha, SUNG Koengmo. Beamspace-domain multichannel nonnegative matrix factorization for audio source separation[J]. IEEE Signal Processing Letters, 2012, 19(1):43-47.
  • 7ZHOU Zhou, LIANG Ruiyu, ZHAO Li, et al. Unsupervised learning of phonemes of whispered speech in a noisy environment based on convolutive non-negative matrix factorization[J]. Information Sciences, 2014(257):115-126.
  • 8LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geomscience and Remote Sensing, 2013, 51(5):2815-2926.
  • 9ZHAO Miao, BU Jiajun, CHEN Chun, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5):1327-1337.
  • 10LIANG Z. Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications[J]. Signal Process, 2010, 90 (7):2150-2163.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部