期刊文献+

一类Burgers方程的精确解 被引量:3

Exact solutions of a class of Burgers equations
下载PDF
导出
摘要 微分方程包含线性和非线性微分方程。微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程。很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究。另外,随着研究的深入,有些原来可用线性偏微分方程近似处理的问题,也必须考虑非线性的影响。从传统的观点来看,求偏微分方程的精确解是十分困难的。经过几十年的研究和探索,人们已经找到了一些构造精确解的方法。借助于Cole-Hope变换,积分变换法和拟解的方法,获得Burgers方程,(2+1)维Burgers方程,(2+1)维高阶Burgers方程的新的精确解。这种方法可以解决一系列的偏微分方程。 Differential equations contain linear and nonlinear differential equations.Research of the nonlinear differential equations is the subject of differential equations,especially nonlinear partial differential equations.Many significant natural science and engineering problems can be attributed to nonlinear partial differential equation.In addition,With the development of research,some problems that may be treated with originally linear partial differential equation approximation problem must also consider nonlinear effects.From the traditional point of view,the exact solutions of partial differential equation is very difficult.After several decades of research and exploration,researchers have found some tectonic exact solution method.In this paper,with the help of Cole-Hope transform,integral method and quasi solution method,some new exact solutions of Burgers equation,(2+1)dimensional Burger equation and(2+1)dimensional higher-order Burgers equation were presented.This method could solve a series of partial differential equations.
作者 李伟 栾孟杰
出处 《沈阳师范大学学报(自然科学版)》 CAS 2013年第2期246-248,共3页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61070242)
关键词 Cole-Hope变换 BURGERS方程 精确解 Cole-Hope transform Burger equation exact solutions
  • 相关文献

参考文献12

  • 1李德生,张鸿庆.一类高维耦合的非线性演化方程的简单求解[J].物理学报,2004,53(6):1635-1638. 被引量:15
  • 2李志斌.非线性数学物理方程的行波解[M].北京:科技出版社.2006.
  • 3范恩贵,张鸿庆.非线性孤子方程的齐次平衡法[J].物理学报,1998,47(3):353-362. 被引量:265
  • 4桑波,伊继金,刘文健.常系数线性微分方程组的解矩阵[J].沈阳师范大学学报(自然科学版),2010,28(3):343-346. 被引量:6
  • 5HIROTA R,ITO M. Resonance of solitons in one dimension[J].Phys Soc Japan, 1983,52(3) :744-748.
  • 6ITO M. An extension of nonlinear evolution equations of the K-dV(mK-dV) type to higher order[J]. Phys SocJapan, 1980,49(2):771-778.
  • 7HIROTAR. Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons[J]. Phys RevLett, 1971,27(18):1192-1194.
  • 8WAZWAZA M. The hirota direct metheod for multiple soliton solutions for model equation of shallow water waves[J].Appl Math Comput, 2008,201 :489-503.
  • 9HIROTAR The direct method in soliton theory[M], Cambridge:Cambridge University Press,2004:15-25.
  • 10BURGERSJ M. The nonlinear diffusion equationCMj. Dordrecht:Reidel, 1974.

二级参考文献23

共引文献280

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部