期刊文献+

全空间中一类Kirchhoff方程非平凡弱解的存在性

Existence of nontrivial weak solution for a class of Kirchhoff-type equation in
下载PDF
导出
摘要 考虑如下Kirchhoff方程:-(a+b∫RN|▽u|2dx)△u=V(x)u=f(x,u),x∈RN(E)非平凡弱解的存在性问题,利用临界点理论中的山路引理,方程(E)弱解的存在性结果被证明。 In this paper,we concern with a class of Kirchhoff-type problems as follows:By using the Mountain Pass Theorem in Critical point theory we obtain a new existence result of nontrivial weak solution for the problem.
出处 《保山学院学报》 2013年第2期53-56,共4页 JOURNAL OF BAOSHAN UNIVERSITY
基金 云南省教育厅项目(2010Y051) 云南省青年基金项目(2012FD060) 保山学院校级重点项目(12B003KZ)
关键词 临界点 KIRCHHOFF方程 Sobolev嵌入 CERAMI条件 Critical point Kirchhoff-type equation Sobolev embedding Cerami condition
  • 相关文献

参考文献12

  • 1G.Kirchhoff, Mechanik,Teubner,Leipzig, 1883.
  • 2C. 0. Alves, F. J. S. A. Corra, T. F. Ma, Positivesolutions for a quasilinear elliptic equation of Kirchhofftype, Comput. Math. Appl. 49 (2005) 85-93.
  • 3B. Cheng, X. Wu, Existence results of positivesolutions of Kirchhoff type problems, Nonlinear Anal.,71(2009), 4883-4892.
  • 4X. He, W. Zou, Infinitely many positive solutionsfor Kirchhoff-type problems, Nonlinear Anal., 70 (3)(2009),1407-1414.
  • 5T. F. Ma, J. E. Muoz Rivera, Positive solutions fora nonlinear nonlocal elliptic transmission problem,Appl. Math. Lett. 16 (2003) 243-248.
  • 6A. Mao, Z. Zhang, Sign-changing and multiplesolutions of Kirchhoff type problems without the P. S.condition, Nonlinear Anal., 70(3)(2009), 1275-1287.
  • 7K. Perera, Z. Zhang, Nontrival solutions ofKirchhoff-type problems via the Yang index, J.Differential Equations 221 (1) (2006) 246-255.
  • 8Z. Zhang, K. Perera, Sign changing solutions ofKirchhoff type problems via invarint sets of descentflow, J. Math. Anal. Appl. 317 (2) (2006) 456-463.
  • 9J.Jin,X.Wu, Infinitely many radial solutions forKirchhoff-type problems in ,J. Math. Anal. Appl.(2010).
  • 10P.H.Rabinowitz, Minimax Methods in CriticalPoint Theory with Application to Differetial Equations,in:CBMS Regional Conf.Ser.in Math., vol.65, AmericanMathematical Society,Providence, RI,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部