期刊文献+

复合材料夹层梁动力响应的传递函数法求解 被引量:2

Solving dynamic response for composite sandwich beams by transfer function method
原文传递
导出
摘要 基于哈密顿原理推导了黏弹性复合材料夹层梁的动力学控制方程及其边界条件表达式,引入状态向量,建立了复合材料夹层梁系统的状态空间方程,采用分布参数体系传递函数方法得到了系统动力学响应封闭解.分别对采用常复模量和频变复模量模型黏弹性芯材复合材料夹层梁进行了频响特性算例验证,两者均符合较好,验证了本方法的正确性.最后讨论了芯材采用常复模量与频变复模量模型建模对结构动力学响应的影响;分析了表层厚度、铺层角度对结构动力学响应的影响规律. The dynamics control equations and boundary conditions of viscoelastic composite sandwich beam were derived by Hamilton′s principle.A fter introducing the state vector,the equation of composite sandwich beam syste ms in state space was established through the distributed parameter system trans fer function method.Then the closed-form solutions of the dynamic response wer e obtained.The correctness of the frequency response characteristics of the com posite sandwich beam with viscoelastic core material,which was modeled as const ant complex modulus and frequency-dependent complex modulus,were numerically v alidated.The dynamic response difference of the composite sandwich beam with vi scoelastic core modeled by constant and frequency-dependent complex modulus wer e discussed.The face thickness,ply angles of the structure effect on the frequ ency response characteristics were analyzed.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期39-44,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50979110)
关键词 复合材料 夹层梁 黏弹性 频率响应 传递函数法 composite meterial sandwich beam viscoelasti c frequency response transfer function method
  • 相关文献

参考文献15

  • 1Hwu C,Chang W C,Gai H S. Vibration suppression of composite sandwich beams [J]. Journal of Sound and Vibration, 2004, 272(1-2): 1-20.
  • 2Kapuria S,Dumir P C,Jain N N. Assessment of zig- zag theory for static loading, buckling, free and forced response of composite and sandwich beams[J]. Composite Structures, 2004, 64(3-4): 317-327.
  • 3Pradeep V, Ganesan N, Bhaskar K. Vibration and thermal buckling of composite sandwich beams with viscoelastic core[J]. Composite Structures, 2007, 81 (1) : 60-69.
  • 4Cho Y B, Averill R C. An improved theory and finite-element model for laminated composite and sandwich beams using first order zig-zag sublaminate approxi mations[J]. Composite Structrues, 1997, 34 (3-4): 281-298.
  • 5Gherlone M, Tessler A, Sciuva M D. Co beam ele- ments based on the refined zigzag theory for multilay ered composite and sandwich laminates[J]. Compos- ite Structures, 2011, 93(11):2882 -2894.
  • 6Ganapathia M, Patela B P, Boisseb P. Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis[J]. Com posites: Part B, 1999, 30(3): 245-256.
  • 7Zapfe J A, Lesieutre G A. A discrete layer beam fi- nite element for the dynamic analysis of composite sandwich beams with integral damping layers [J ]. Composite and Structrues, 1999, 70(6): 647-666.
  • 8Zapfe J A, Lesieutre G A, Wodfke H W. Damping a- nalysis of composite sandwich beams using a discrete layer finite element with comparison to experimental data[J]. AIAAJournal, 1995, 12(13): 470- 479.
  • 9Arikoglu A,Ozkol L. Vibration analysis of composite sandwich beams with viscoelastic core by using differ ential transform method [J]. Composite Structures, 2010, 92(12): 3031-3039.
  • 10Zhou J P,Feng Z G. Transient response analysis of one dimensional distributed parameter systems [J]. International Journal of Solids and Structures, 1999, 36(19) :2807-2824.

二级参考文献8

共引文献29

同被引文献17

  • 1胡梦佳,李书,王远达.主动约束层阻尼板结构动力学建模[J].振动.测试与诊断,2013,33(S1):198-201. 被引量:5
  • 2李恩奇,雷勇军,唐国金,李道奎.基于传递函数方法的约束层阻尼梁动力学分析[J].振动与冲击,2007,26(2):75-78. 被引量:30
  • 3Zheng W G, Lei Y F, Li S D. Topology optimization of passive constrained layer damping with partial coverage on plate [ J ]. Shock and Vibration,2013, 20 (2) : 199 - 211.
  • 4Kumar S, Kumar R. Theoretical and experimental vibration analysis of rotating beams with combined ACLD and Stressed Layer Damping treatment [ J ]. Applied Acoustics, 2013, 74 (5) :675 -693.
  • 5Lepoittevin G, Kress G. Optimization of segmented constraining layer damping with mathematical programming using strain energy analysis and modal data [ J ]. Material Design, 2010,31(1) :14 -24.
  • 6Gao J X, Liao W H. Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments [ J ]. Journal of Sound and Vibration. 2005, 280(1/2) :329 -357.
  • 7Sun Da-gang, Zhang Xin, Song Yong, et al. Optimization for sandwich damping composite structure used in sprocket of crawler vehicles [ J ]. Sandwich Structures and Materials, 2012,14( 1 ) :95 - 110.
  • 8Yang B, Tan C A. Transfer function of one-dimension distributed Parameter system [ J ]. ASME Journal of Apphed Mechanies, 1992, 59(4) :1009 - 1014.
  • 9Susanto K S. Design, modeling and analysis of piezoelectric forceps actuator [ D ]. Los Angeles: Department of Mechanical Engineering, University of Southern California, 2007.
  • 10Yellin J M, Shen I Y, Reinhall P G, et al. An analytical and experimental analysis for a one-dimensional passive stand-off layer damping treatment [ J ]. ASME Journal of Vibration and Acoustics, 2000,122 : 440 - 447.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部