摘要
证明了球面上的Poisson积分算子从L^p(S^(n-1))到Lorentz空间L^(q,1)(B_1)(q<np/n-1,p>1)有界,且从有界Borel测度集M(S^(n-1))到L^(q,1)(B_1)(q<n/n-1)有界,推广了部分已知的结果.进一步构造了一个反例说明了球面上的Poisson积分算子不一定从M(S^(n-1))到L^(n/(n-1))(B_1)有界.
The boundedness of the Poisson integral operaror on a sphere is established in this paper,that is the operator is bounded from Lp(S(n-1)) to the Lorentz space L(q,1)(B_1)(q(np)/(n-1) when p1) and bounded from M(S(n-1)) to L(q,1)(B_1)(qn/(n-1)),which extends some known results.Furthermore, a simple example is constructed to show that the Poisson integral operator isn't bounded from M(S(n-1)) to L(n/(n-1))(B_1).
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2013年第2期139-144,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11101372
11201103
11226104
11226109)