期刊文献+

长链非编码RNA-TP53TG1在神经胶质瘤细胞中对糖剥夺应激反应的影响 被引量:6

The effect of long non-coding RNA-TP53TG1 on glucose deprivation stress response in glioma cells
下载PDF
导出
摘要 目的构建长链非编码RNA-TP53TG1的真核表达克隆,并探索其在神经胶质瘤中对糖剥夺应激反应的影响。方法用RT-PCR方法从人胶质瘤细胞中扩增出TP53TG1;构建了TP53TG1的全长真核表达克隆;实时定量PCR检测其在U87MG细胞内的表达;同时用低糖(0.3 g/L葡萄糖、8 h)处理;real-time PCR检测GRP78、IDH1和PKM2的表达水平。结果成功构建了真核重组表达质粒pCIG-TP53TG1;在转染U87MG细胞36 h后,可见绿色荧光的表达,U87MG细胞中TP53TG1 mRNA升高了2.9×106倍(P<0.05);过表达TP53TG1的同时低糖处理,GRP78和IDH1 mRNA的表达水平显著升高(P<0.05),而PKM2 mRNA的表达水平显著降低(P<0.05)。结论在U87MG细胞中,TP53TG1可能通过影响GRP78、IDH1和PKM2 mRNA的表达,而参与到对糖剥夺的应激反应过程。 Objective To construct full length clone of TP53TG1 into eukaryotic expression vector, and to explore its overexpression effect on glucose deprivation stress response. Methods TP53TG1 was amplified from human gli oma cell by RT-PCR, and the eukaryotic expression clone of TP53TG1 was constructed. Then, its expression in U87MG cells was detected by real time PCR. Furthermore, we overexpressed TP53TG1 and meanwhile treated with low glucose (0. 3 g/L,8 h) in U87MG cells, and measured the expression of GRP78, IDH1 and PKM2 mRNA by real time PCR. Results TP53TG1 eukaryotic expression clone was successfully constructed. After the clone was transfected into U87MG cells for 36 hours, green fluorescence was seen. The expression of TP53TG1 was increased by 2. 9 x 106 times in U87MG cells (P 〈0. 05). As a result of over expression of TP53TG1 and low glucose treat ment simultaneously in U87MG cells, GRP78 and IDHI mRNA expression were significantly increased (P 〈 0. 05 ), while PKM2 mRNA significantly reduced ( P 〈 0. 05 ). Conclusions TP53TG1 may be involved in the stress response of U87MG cells under glucose deprivation through influencing the expression of GRP78, IDHI and PKM2 mRNA.
出处 《基础医学与临床》 CSCD 北大核心 2013年第6期680-684,共5页 Basic and Clinical Medicine
基金 国家自然科学基金(31071203)
关键词 TP53TG1 U87MG细胞 GRP78 IDH1 PKM2 TP53TGl U87MG cells GRP78 IDH I PKM2
  • 相关文献

参考文献10

  • 1Barsyte LD, Lau SK, Boutros PC, et al. The c-Myc onco- gene directly induces the H19 noncoding RNA by allele- specific binding to potentiate tumorigenesis [ J ]. CancerRes, 2006, 66, 5330 - 5337.
  • 2Zhou Y, Zhong Y, Wang Y, MEG3 non-coding RNA [ J ]. et al. Activation of p53 by J Biol Chem, 2007, 282,24731 -24742.
  • 3Zhang X, Sun S, Pu JK, et al. Long non-coding RNA ex- pression profiles predict clinical phenotypes in glioma [ J ]. Neurobiol Dis, 2012, 481 -488.
  • 4Takei Y, Ishikawa S, Tokino T, et al. Isolation of a novel TP53 target gene from a colon cancer cell line carrying a highly regulated wild-type TP53 expression xystem [ J ]. Genes, Chromosomes Cancer, 1998, 23 : 1 - 9.
  • 5Cheung EC, Vousden KH. The role of p53 in glucose me- tabolism [J]. Curt Opini Cell Biol, 2010, 22:186-191.
  • 6Suely K, Nagahashi M, Sueli S. Metabolism and Brain Cancer [ J]. Clinics, 2011,66(Suppl 1 ) :33 -43.
  • 7Le AS. GRP78 Induction in Cancer: Therapeutic andPrognostic Implications [ J ]. Cancer Res, 2007, 67: 3496 - 3499.
  • 8Graham NA, Tahmasian M, Kohli B, et al. Glucose depri- vation activates a metabolic and signaling amplification loop leading to cell death [ J]. Mol Systems Biol, 2012, 8:589. doi: 10. 1038.
  • 9Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-la [J]. Science, 2009, 324:261 -265.
  • 10Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibi- tion of pyruvate kinase M2 by reactive oxygen species con- tributes to cellular antioxidant responses [ J ]. Science, 2011, 334:1278 - 1283.

同被引文献79

  • 1Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell,2012, 149(1): 36-47.
  • 2Alam R, Schultz CR, Golembieski WA,et al. PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma. Neuro Oncology,2013, 15(4):451-461.
  • 3Dasari VR, Kaur K,Velpula KK, et al. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt Pathway.PLoS One, 2010,5(4): e10350.
  • 4Jiao Y, Killela PJ, Reitman ZJ, et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget,2012,3(7): 709-722.
  • 5Raghunathan A, Olar A, Vogel H,et al. Isocitrate dehydrogenase 1 R132H mutation is not detected in angiocentric glioma.Ann Diagn Pathol,2012,16(4):255-259.
  • 6Hartmann C1, Hentschel B, Wick W,et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol,2010,120(6):707-718.
  • 7Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol,2014,16(1):103-112.
  • 8Tabuse M, Ohta S, Ohashi Y,et al. Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Mol Cancer,2011,10: 60.
  • 9Quiros S, Roos WP, Kaina B. Rad51 and BRCA2-New molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One,2011,6(11): e27183.
  • 10Oppel F, Müller N, chackert G,et al. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol Cancer,2011,10: 137.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部