期刊文献+

‘阿蒂擎天’凤梨谷胱甘肽-S-转移酶基因的克隆与乙烯诱导表达特性的初步分析 被引量:6

Cloning of Glutathione-s-transferase Gene and Primary Expression Analysis in Guzmania wittmackii ‘Attila’ Induced by Ethylene
下载PDF
导出
摘要 以阿蒂擎天凤梨乙烯处理和不处理的植株为材料建立的抑制性差减杂交文库中,筛选到的一个被乙烯诱导并与已知植物谷胱甘肽-S-转移酶(GST)同源的cDNA片段,通过RACE技术得到该基因的全长cDNA序列。序列分析表明,该基因可能属于thioredoxin-likesuperfamily和GSTC_family superfamily两个超家族中的成员。利用半定量RT-PCR检测该基因的表达量在乙烯处理后先会在1h显著升高,然后随时间逐步降低,说明乙烯作为一种逆境胁迫相关激素,可在短时间内诱导凤梨中GST的表达。推测其在受到外源乙烯信号诱导后,一方面可能参与了植物体内的解毒作用,另一方面可能参与了花青素的合成调控和运输。本实验中的GST作为观赏凤梨中一个新发现的GSTs家族成员,对于研究热带花卉中GSTs家族的特点和提高其抗逆性和品质具有重要的理论意义和实用价值。 An ethylene inducible eDNA fragment being homology with the known glutathione-s-transferase (GST) in plants was screened in the suppression subtractive hybridization (SSH) library constructed with the materials of Guzmania wittmackii Attila plant treated and untreated by ethylene. Rapid Amplification of eDNA Ends (RACE) was used to obtain the full length eDNA. Sequence analysis suggested that the gene should belong to thioredoxin- like superfamily and GST C_family superfam'ily. Semi-quantitative RT-PCR results exhibited that the expre ssion of this gene significantly increased with the treatment of ethylene in one hour, and then decreased gradually with time, which suggested that the ethylene as an adversity stressrelated hormone could induce GST gene expression in a short time. We hypothesized that GST, on the one hand, might be involved in detoxification in vivo, on the other hand, might be involved in regulation and transport of anthocyanin after ethylene induction. In our research, this GST as one new member of GSTs family in bromeliads, has the essential theoretical significance and applied value to study GSTs family characteristics and improve stress resistance and quality modification in tropical flowers.
出处 《分子植物育种》 CAS CSCD 北大核心 2013年第3期365-370,共6页 Molecular Plant Breeding
基金 海南省自然科学基金(808191) 博士启动基金(PZSb0806,PZSb0604)资助
关键词 谷胱甘肽-S-转移酶 阿蒂擎天凤梨 乙烯 表达分析 Glutathione-s-transferase, Guzmania attila, Ethylene, Expression analysis
  • 相关文献

参考文献20

  • 1Armstrong R.N., 1997, Structure, catalytic mechanism, and evo- lution of the glutathione transferases, Chem. Res. Toxicol., 10(1): 2-18.
  • 2Bemier G., Havelange A., Houssa C., Petitjean A., and Lejeune P., 1993, Physiological signals that induce flowering, Plant Cell, 5(10): 1147-1155.
  • 3Bleecker A.B., and Kende H., 2000, Ethylene: a gaseous signal molecule in plants, Annu. Rev. Cell Dev. Biol., 16:1-18.
  • 4Chen I.C., Huang I.C., Liu M.J., Wang Z.G., Chung S.S., and Hsieh H.L., 2007, Glutathione S-transferase interacting with farred insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis, Plant Physiol., 143(3): 1189-1202.
  • 5Dixon D.P., Cummins L., Cole D.J., and Edwards R., 1998, Glu- tathione-mediated detoxification systems in plants, Curr. Opin. Plant Biol., 1(3): 258-266.
  • 6Edwards R., Dixon D.P., and Walbot V., 2000, Plant glutathione S-transferases: enzymes with multiple functionsin sickness and in health, Trends Plant Sci., 5(5): 193-198.
  • 7Flury T., Adam D., and Kreuz K., 1995, A 2,4-D-inducible glutathione S-tmnsferase from soybean (Glycine max). Puri- fication, characterisation and induction, Physiologia Plan- tarum, 94(2): 312-318.
  • 8Grotewold E., 2004, The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products, Planta, 219(5): 906-909.
  • 9Kitamura S., Shikazono N., and Tanaka A., 2004, TRANSPAR- ENT TESTA 19 is involved in the accumulation of both an- thocyanins and proanthocyanidins in Arabidopsis, Plant J., 37(1): 104-114.
  • 10梁东成,黄万和.观赏凤梨催花栽培试验[J].广东林业科技,2005,21(3):39-41. 被引量:16

二级参考文献39

  • 1沈扬,王炜勇,俞信英,葛亚英.浙江地区擎天凤梨主要种类及栽培技术[J].浙江农业科学,2004,45(4):193-196. 被引量:3
  • 2Achard P., Baghour M., Chapple A., Hedden P., van Der Straeten D., Genschik P., Moritz T., and Harberd N.P., 2007, The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes, Proc. Natl. Acad. SCI., USA, 104(15): 6484-6489.
  • 3Burg S.P., and Burg E.A., 1966, Auxin-induced ethylene formation: Its relation to flowering in the pineapple, Science, 152 (726): 126.
  • 4Danijela D., Robert B., and Susan H., 2006, Flowering induction of Guzmania by ethylene, Scientia Horticulturae, 110(1): 104-108.
  • 5Durfee T., Roe J., Sessions R., Inouye C., Serikawa K., Feldmann K., Weigel D., and Zambryski P., 2003, The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis, Proc. Natl. Acad. SCI., USA, 100:8571-8576.
  • 6Georges B., and Claire P., 2005, A physiological overview of the genetics of flowering time control, Plant Biotechnology Journal, 3:3-16.
  • 7Jeon J S., Jang S., Lee S., Nam J., Kim C., Lee S H., Chung Y Y., Kim S R., Lee Y H., Cho Y.G., and An G., 2000, leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development, Plant Cell, 12(6): 871-84.
  • 8Kaneko M., Inukai Y., Ueguchi-Tanaka M., Itoh H., Izawa T., Kobayashi Y., Hattori T., Miyao A., Hirochika H., and Ashikari M., 2004, Loss-of-fimction mutations of the rice GAMYB gene impair cx-amylase expression in aleurone and flower development, Plant Cell, 16(1): 33-44.
  • 9Kuan C.S., Yu C.W., Lin M.L., Hsu H.T., Duane P.B., and Lin C. H., 2005, Foliar application of aviglycine reduces natural flowering in pineapple, HortScience, 40(1): 123-126.
  • 10Ouaked F., Rozhon W., Lecourieux D., and Hirt H., 2003, A MAPK pathway mediates ethylene signaling in plants, The EMBO Journal, 22(6): 1282-1288.

共引文献28

同被引文献29

  • 1赵武帅,翟琪麟,安泽伟,方家林,黄华孙.橡胶树转录因子HbWRKY9的克隆与特性分析[J].基因组学与应用生物学,2015,34(3):599-606. 被引量:15
  • 2彭筱娜,易自力,蒋建雄,刘亮.观赏凤梨组织培养中防止外植体褐化的初步研究[J].湖南农业科学,2007(4):67-69. 被引量:15
  • 3Achard P., Baghour M., Chapple A., Hedden P., Van Der Straeten D., Genschik P., Moritz T., and Harberd N.P., 2007, The plant stress hormone ethylene controls floral transition via DEL- LA-dependent regulation of floral meristem-identity genes, Proc. Natl. Acad. Sci. USA., 104(15): 6484-6489.
  • 4Burg S.P., and Burg E.A., 1966, Auxin-induced ethylene forma- tion: its relation to flowering in the pineapple, Science,152 (3726): 1269.
  • 5Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W., and Ecker J.R., 1997, Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLEN- EINSENSITIVE3 and related proteins, Cell, 89:1133-1144.
  • 6Cong H.Q., Li Z.Y., and Xu L., 2013, Characterizing develop- mental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis, Plant Growth Regulation, 69 (3): 247-257.
  • 7Dukovski D., Bematzky R., and Han S., 2006, Flowering induc- tion of Guzmania by ethylene, Scientia Horticulturae, 110 (1): 104-108.
  • 8Gettlio Augusto Pinto Da C., 2005, Applied aspects of pineapple flowering, Bragantia, 64(4): 499-516.
  • 9Kuan C.S., Yu C.W., Lin M.L., Hsu H.T., Bartholomew D.P., and Lin C.H., 2005, Foliar application of aviglycine reduces natural flowering in pineapple, Hort Science, 40(1): 123-126.
  • 10Trusov Y., and Botella J.R., 2006, Silencing of the ACC synthase gene A CACS2 causes delayed flowering in pineapple (Ananas comosus (L.) Men'.), J. Exp. Bot., 57(14): 3953-3960.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部