期刊文献+

蜻蜓凤梨FLD同源基因的克隆及表达分析 被引量:2

Cloning and Expression Analysis of FLD Homologous Gene from Aechmea fasciata
下载PDF
导出
摘要 FLOWERING LOCUS D(FLD)是植物自主开花途径花发育基因,在植物营养生长向生殖生长转变的过程中起重要的调控作用。本研究利用同源基因克隆法结合RACE技术克隆了蜻蜓凤梨(Aechmea fasciata)花发育基因FLD的类似基因AfFLD。序列分析比对表明,AfFLD所推测的氨基酸序列包含有LSD1-LIKE亚家族两个高度保守的结构域:SWIRM结构域和胺氧化酶结构域,该蛋白与玉米、拟南芥的FLD蛋白的同源性分别为72%和73%。利用实时荧光定量PCR(qRT-PCR)技术分析了乙烯处理不同时间FLD基因的表达模式,结果表明乙烯处理不同时间的各组中,处理后1d时FLD的表达量达到最高值,其中表达量最高为0h的2.5倍。本结果为开花自主途径中相关基因对乙烯处理后的响应机理的研究提供理论基础。 FLOWERING LOCUS D (FLD)-like genes involved in the autonomous pathway plays an important role in the regulating the flora transition in plant. The FLD-like gene named AfFLD was cloned from A echmeafasciata by RT-PCR and rapid amplification of cDNA ends (RACE). By using alignment analysis, the deduced amino acid sequence contained two domains: SWIRM domain and amine oxidase domain, both of which were highly conserved in LSD1-LIKE protein family. The deduced protein of AfFLD had 72% and 73% identical to homologs encode AtFLD in Arabidopsis thaliana and ZmFLD in Zea mays, respectively. The expression patterns of AfFLD gene during the treatment of ethylene were investigated by quantitative real-time PCR (qRT-PCR). Results showed that the expression of AfFLD reached the highest level on one day after ethylene processing, which the highest amount of expression 2.5 times than un-treatrnent (0 h). The results of this study would provide a research foundation for understanding the regulation mechanism of key enzymes of the autonomous flowering pathway.
出处 《分子植物育种》 CAS CSCD 北大核心 2013年第3期371-378,共8页 Molecular Plant Breeding
基金 农业部热带作物种质资源利用重点开放实验室开放基金(KFKT-2011-06)资助
关键词 蜻蜓凤梨 乙烯处理 FLD 自主途径 A e chmea fascictta, Ethylene treatment, FLD, Autonomous flowering pathway
  • 相关文献

参考文献23

  • 1Achard P., Baghour M., Chapple A., Hedden P., Van der Straeten D., Genschik P., Moritz T., and Harberd N.P., 2007, The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes, Proc. Natl. Acad. Sci., USA, 104(15): 6484-6489.
  • 2Aravind L., and Iyer L.M., 2002, The SWlRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities, Genome Biol., 3 (8): research0039.1-0039.7.
  • 3Baurle I., and Dean C., 2008, Differential interactions of the au- tonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets, PLoS One, 3(7): e2733.
  • 4Dong Z.S., Danilevskaya O., Abadie T., Messina C., Coles N., and Mark C., 2012, A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling, PLoS One, 7(8): e43450.
  • 5Helliwell C.A., Wood C.C., Robertson M., James Peacock W., and Dennis E.S., 2006, The Arbidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is a part of a high-molecular-weight protein complex, Plant J., 46(2): 183-192.
  • 6Hepworth S.R., Valverde F., Ravenscrofc D., Mouradov A., and Coupland G., 2002, Antagonistic regulation of flowering time gene SOC1 by CONSTANS and FLC via separate pro- moter motifs, The EMBO Journal, 21 (16): 4327-4337.
  • 7He Y.H., 2012, Chromatin regulation of flowering, Trends Plant Sci., 17(9): 556-562.
  • 8He Y.H., Michaels S.D., and Amasino R.M., 2003, Regulation of flowering time by histone acetylation in A rabidopsis, Sci- ence, 302(5651): 1751-1754.
  • 9Higgins J.A., Bailey P.C., and Laurie D.A., 2010, Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses, PLoS One, 5(4): e10065.
  • 10Jiang D.H., Yang W.N., He Y.H., and Amasino R.M., 2007, Am- bidopsis relatives of the Human Lysine-specific demethylase 1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition, Plant Cell, 19(10): 2975-2987.

二级参考文献138

  • 1王昕,种康.植物小G蛋白功能的研究进展[J].植物学通报,2005,22(1):1-10. 被引量:19
  • 2梁东成,黄万和.观赏凤梨催花栽培试验[J].广东林业科技,2005,21(3):39-41. 被引量:16
  • 3赵仲华,曾群,赵淑清.植物春化作用的分子机理[J].植物学通报,2006,23(1):60-67. 被引量:18
  • 4van Doorn Wouter G,van Meeteren Uulke.Flower opening and closure:a review[J].Journal of Experimental Botany,2003,54(389):1801-1812.
  • 5Neljubow D.N.Uber die horizontale nutation der stengel von Pisum sativum und einiger anderen[J].Pflanzen Beitrage und Botanik Zentralblatt,1901(10):128-139.
  • 6Gane R.Production of ethylene by some ripening fruits[J].Nature,1934(134):1008.
  • 7Crocker W,Hitchcock A.E.,Zimmerman P.W.Similarities in the effects of ethylene and the plant auxins[J].Contrib,1935(7):231-248.
  • 8Wang Kevin L.C.,Li Hai,Ecker Joseph R.Ethylene biosynthesiS and Signaling networks[J].The Plant Cell,2002(14):131-151.
  • 9Bernier Georges,Havelange Andr □e,Houssa Claude.Physiological signals that induce flowering[J].The Plant Cell,1993,5(10):1147-1155.
  • 10Rodrigues A.G.Smoke and ethylene and pineapple flowering[J].Journal of Agriculture University of Puerto Rico,1932(16):5-6.

共引文献35

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部