期刊文献+

Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction

钛基纳米多孔钯-铜催化剂的水热法合成及对甲酸氧化和氧还原的电活性(英文)
下载PDF
导出
摘要 Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 采用水热法,以乙二醇为还原剂,直接在钛基体上沉积纳米多孔Pd和Pd-Cu颗粒,制备钛基Pd及Pd-Cu电极材料,研究它们在碱性溶液中对甲酸氧化和氧还原反应(ORR)的电催化活性。结果表明,nanoPd_(81)Cu_(19)/Ti对甲酸氧化具有最大的稳定电流密度,说明Cu的加入极大地改善Pd对甲酸氧化的电活性。所制备的二元Pd-Cu催化剂对ORR的电催化活性均明显高于nanoPd/Ti。在nanoPd_(81)Cu_(19)/Ti电极上,ORR的起始电位相对于nanoPd/Ti电极正移了70 mV,在-0.3 V时ORR的电流密度为2.12 mA/cm^2,是在nanoPd/Ti电极上的3.7倍。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页 中国有色金属学报(英文版)
基金 Project(10JJ9003) supported by Hunan Provincial Natural Science Foundation and Xiangtan Natural Science United Foundation,China Project(11K023) supported by Scientific Research Fund of Hunan Provincial Education Department,China
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS 钯电极 钯-铜电极 甲酸氧化 氧还原反应 纳米颗粒 电催化
  • 相关文献

参考文献5

二级参考文献76

  • 1尹荔松,陈敏涛,李婷,周克省,高松华.白云石制备菱面片层纳米氧化镁[J].物理化学学报,2007,23(3):433-437. 被引量:15
  • 2Ralph T R, Hogarth M P. Catalyst for low temperature fuel eeUs [ J ]. Platinum Metal Rev, 2002, 46 ( 3 ) : 117-135.
  • 3Shao Y Y, Liu J, Wang Y, et al. Novel catalyst sup- port materials for PEM fuel cells: current status and fu- ture prospects[J]. J Mater Chem, 2009, 19 (1) : 46- 59.
  • 4Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites[ J]. J Phys Chem C, 2008, 112 (50) : 19841-19845.
  • 5Brian S, Prashant V K. Electrocatalytically active gra- phene-plafinum nanocomposites role of 2-D carbon sup- port in PEM fuel cells[J]. J Phys Chem C, 2009,113 (19) : 7990-7995.
  • 6Li Y M, Tang L H, Li J H. Preparation and electro- chemical performance for methanol oxidation of Pt/gra- phene nanocomposites [ J ]. Electrochem Commun, 2009,11 (4) : 846-849.
  • 7Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80 (6): 1339-1339.
  • 8Halder A, Sharma S, Hegde M S, et al. Controlled at- tachment of ultrafine platinum nanoparticles on function- alized carbon nanotubes with high electrocatalytic activi- ty for methanol oxidation [ J ]. J Phys Chem C, 2009, 113 (4): 1466-1473.
  • 9Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation[J]. Carbon, 2010, 48 (4): 1124- 1130.
  • 10Chen J H, Wang M Y, Liu B, et al. Platinum cata- lysts prepared with functional CNT defects and its im- proved catalytic performance for methanol oxidation [J]. J Phys Chem B, 2006, 110 (24): 11775- 11779.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部