期刊文献+

基于局部场电位固有模态分量的响应调谐特性研究 被引量:2

Research about the Tuning Characteristics of Response Based on the Intrinsic Mode Functions of Local Field Potential
下载PDF
导出
摘要 局部场电位(LFP)反映了视觉刺激下大脑皮层局部区域神经元集群的响应。LFP响应特征的准确提取,对分析视觉信息的处理机制具有重要意义。本研究针对LFP的非平稳特性,采用具有自适应特征的希尔伯特黄变换,分解LFP固有模态分量,据此研究了大鼠V1区对刺激光栅空间频率的响应调谐特性,并与多神经元锋电位(MUA)和小波分解提取的Gamma频带进行了对比。结果表明:LFP第二阶固有模态分量对刺激光栅空间频率的调谐特性最强,调谐指数的均值(0.795 1)高于MUA调谐指数(0.631 3)和小波分解调谐指数(0.664 6),而且与MUA响应一致率达68.75%。所提出的方法在LFP响应频带特征提取上更有优势。 Local field potential (LFP) reflects the response of the neuron clusters in the local area of cerebral cortex under visual stimulation. Extracting response characteristics of LFP accurately is of great importance to the analysis of visual information processing mechanism. Here, Hilbert-Huang transform which has adaptive characteristics was adopted according to the non-stationary of LFP, and the tuning characteristics of the stimulate raster spatial frequency response in V1 area of the rat based on the intrinsic mode components of LFP was studied, and Multi-unit activity (MUA) and Gamma-band extracted with wavelet decomposition were compared. Results showed that the second intrinsic mode function of LFP was the strongest on the tuning characteristics of stimulate raster spatial frequency, and the average of tuning index (0. 795 1 ) was greater than MUA (0.631 3) and wavelet decomposition (0.664 6), and its consistency rate with MUA was 68.75%. Therefore, the proposed method in feature extraction of response band has more advantages.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第3期292-298,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金项目(60971110) 河南省科技攻关计划项目(122102210102)
关键词 局部场电位 希尔伯特黄变换 固有模态分量 调谐特性 local field potential Hilbert-Huang transform intrinsic mode functions tuning characteristics
  • 相关文献

参考文献17

  • 1Mazer JA, Vinje WE, McDermott J, et al. Spatial frequency and orientation tuning dynamics in area V1 [ J]. Neurobiology, 2002, 99(3) : 1645 -1650.
  • 2Belitski A, Panzeri S, Magri C, et al. Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands [ J ]. Journal Computational Neuroscience, 2010, 29 (3) :533 - 545.
  • 3Gawne TJ. The local and nonlocal components of the local field potential in awake primate visual cortex [ J ]. Journal of Computational Neuroscience, 2010, 29 (3) :615 - 623.
  • 4lnce RAA, Mazzoni A, Bartels A, et al. A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features [ J ]. Journal of Neuroscienee Methods, 2012, 210 ( 1 ) : 49 - 65.
  • 5Belitski A, Gretton A, Magri C. Low-frequency local fieldpotentials and spikes in primary visual cortex convey independent visual information [ J]. The Journal of Neurnscience, 2008, 28 (22) :5696 - 5709.
  • 6Henrie JA, Shapley R. LFP power spectra in V1 cortex: the graded effect of stimulus contrast [ J ]. Journal of Neurophysiology, 2005, 94(1 ): 479-490.
  • 7Kayser C, Konig P. Stimulus loeklng and feature selectlvlty prevail in complementary frequency ranges of V1 local field potentials [J]. Neuroseienee, 2004, 19(2):485-489.
  • 8Philipp B, Georgios A. Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex [ J ]. Frontiers in Systems Neuroscience, 2008, 2 (2) : 1 - 11.
  • 9Magri C, Mazzoni A, Logothetis NK, et al. Optimal band separation of extracellular field potentials [ J ]. Tournal of Neuroscience Methods, 2012, 210 ( 1 ):66 - 78.
  • 10Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- station time series analysis [ J]. Proceedings of the Royal Society of London, 1998, 454 : 903 - 995.

二级参考文献29

  • 1赵治栋,唐向宏,赵知劲,潘敏,陈裕泉.基于Hilbert-Huang Transform的心音信号谱分析[J].传感技术学报,2005,18(1):18-22. 被引量:17
  • 2游荣义,陈忠.基于小波变换的脑电高阶奇异谱分析[J].电子测量与仪器学报,2005,19(2):58-61. 被引量:5
  • 3廖祥,尹愚,尧德中.基于连续小波变换和支持向量机的手动想象脑电分类[J].中国医学物理学杂志,2006,23(2):129-131. 被引量:14
  • 4PFURTSCHELLER G, LOPES DA SILVA F H. Eventrelated EEG/MEG synchronization and desynPhmniza: basic principles [ J ]. Clinical Neumphysiology, 1999, (110) :1842-1857.
  • 5PFURTSCHELLER G, NEUPER C, FLOTZINGER D, et al. EEG based discrimination between imagination of right and left hand movement [ J ]. Electroenceph. Clin.Neurophysiol, 1997, ( 103 ) :642-651.
  • 6PENGA Z K, TSE P W, CHU F L. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing, 2005, (5) :974-988.
  • 7HUANG M L, WU P D, LIU Y, et al. Application and contrast in brain-computer interface between HilbertHuang transform and wavelet transform[ C ]. The 9th International Conference for Young Computer Scientists, Hunan, China, 2008 : 1706-1710.
  • 8HUANG N, SHEN Z, LONG S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[ J]. Proceedings of the Royal Society of London, 1998(454) :903 - 995.
  • 9BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects [ J]. NeuroImage, 2007, (37) :539-550.
  • 10YUAN L, YANG B H, CEN B, et al. Combination of wavelet packet transform and Hilbert-Huang transform for recognition of continuous EEG in BCIs [ C ]. The 2nd IEEE International Conference on Computer Science and Information Technology, 2009:589-594.

共引文献47

同被引文献20

  • 1丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 2桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30
  • 3Theodoridiss,模式识别[M].北京:电子工业出版社,2010.
  • 4Lewicki MS. A review of methods for spike sorting: the detectionand classification of neural action potentials [ J]. Network : CompNeural, 1998, 9(4) : R53 -R78.
  • 5Kim KH, Kim SJ. Neural spike sorting under nearly 0 - dBsignal-to-noise ratio using nonlinear energy operator and artificialneural-network classifier [ J]. IEEE Trans Biomed Eng, 2000,47(10) : 1406 -1411.
  • 6Adamos DA, Kosmidis EK, Theophilidis G. Performanceevaluation of PCA-based spike sorting algorithms [J]. ComputMeth Prog Bio, 2008, 91(3) : 232 -244.
  • 7Bestel R, Daus AW, Thielemann C. A novel automated spikesorting algorithm with adaptable feature extraction [ J ]. JNeurosci Methods, 2012, 211(1) : 168 - 178.
  • 8Paraskevopoulou SE, Barsakcioglu DY. Feature extraction usingfirst and second derivative extrema ( FSDE) for real-time andhardware-efficient spike sorting [ J]. J Neurosci Methods, 2013 ,215(1) : 29 -37.
  • 9Wild J, Prekopcsak Z. Performance comparison of extracellularspike sorting algorithms for single-channel recordings [ J ]. JNeurosci Methods, 2012, 203(2) : 369 -376.
  • 10Gibson S, Judy JW. Technology-aware algorithm design forneural spike detection, feature extraction, and dimensionalityreduction [ J]. IEEE Trans Neur Sys Reh,2010, 18(5) : 469 -478.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部